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Announcements

• A7 due tonight

• Prelim/Final
– Next Thu at 7pm
– Contact us asap if you have constraints
– Review session: Tuesday evening  (time TBD)
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Dynamic range

• Dynamic range Rd = Imax  / Imin , or (Imax + k) / (Imin + k)
– determines the degree of image contrast that can be achieved
– a major factor in image quality

• Ballpark values
– Desktop display in typical conditions: 20:1
– Photographic print: 30:1
– Desktop display in good conditions: 100:1
– High-end display under ideal conditions: 1000:1
– Digital cinema projection: 1000:1
– Photographic transparency (directly viewed): 1000:1
– High dynamic range display: 10,000:1
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How many levels are needed?
• Depends on dynamic range

– 2% steps are most efficient:

– log 1.02 is about 1/120, so 120 steps per decade of dynamic range
• 240 for desktop display
• 480 to drive HDR display

• If we want to use linear quantization (equal steps)
– one step must be < 2% (1/50) of Imin

– need to get from ~0 to Imin • Rd , so need about 50 Rd levels

• 1500 for a print; 5000 for desktop display; 500,000 for HDR 
display

• Moral: 8 bits is just barely enough for low-end applications
– but only if we are careful about quantization

4



© 2015 Kavita Bala
Cornell CS4620 Fall 2015 • Lecture 39

Intensity quantization in practice

• Option 1: linear quantization
– pro: simple, convenient, amenable to arithmetic
– con: requires more steps (wastes memory)
– need 12 bits for any useful purpose; more than 16 for HDR

• Option 2: power-law quantization
– pro: fairly simple, approximates ideal exponential quantization
– con: need to linearize before doing pixel arithmetic
– con: need to agree on exponent
– 8 bits are OK for many applications; 12 for more critical ones
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Why gamma?

• Power-law quantization, or gamma correction is most 
popular

• Original reason: CRTs are like that
– intensity on screen is proportional to (roughly) voltage2

• Continuing reason: inertia + memory savings
– inertia: gamma correction is close enough to logarithmic that 

there’s no sense in changing
– memory: gamma correction makes 8 bits per pixel an 

acceptable option
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Gamma quantization
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• Close enough to ideal perceptually uniform exponential
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Gamma correction
• Sometimes (often, in graphics) we have computed 

intensities a that we want to display linearly
• In the case of an ideal monitor with zero black level,  
 
 
(where N = 2n – 1 in n bits).  Solving for n:  
 

• This is the “gamma correction” recipe that has to be 
applied when computed values are converted to 8 bits for 
output
– failing to do this (implicitly assuming gamma = 1) results in 

dark, oversaturated images
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Gamma correction
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sRGB quantization curve

• The predominant standard for “casual color” in computer 
displays
– consistent with older typical practice
– designed to work well under imperfect conditions
– these days all monitors are 

calibrated to sRGB by  
default

– in practice, usually  
defines what your 
pixel values mean
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displays
-6 -4 -2 0 2 4 6 8

starlight moonlight indoor lighting sunlight

scotopic mesopic photopic

• poor visibility 
• no color vision 
• low acuity

• good visibility 
• good color vision 
• high acuity

luminance 
(log cd/m2)

range of 
illumination
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Real World has high dynamic range
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• “High dynamic range” — pixels can be arbitrarily bright or dark
• “Low dynamic range” — there are limits on the min and max

• Simplest solution: just scale and clamp
• More flexible: introduce a contrast control

• Scale factor a is “exposure”
– often quoted on a power-of-2 scale

Converting from HDR to LDR
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Computer graphics

Computer vision

Virtual

Real
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Cornell Program of Computer Graphics (PCG)



Computing light



Global illumination

Computing light



Which is the virtual image, which is the real Cornell Box?

VR

Radiosity ‘84
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Radiosity

Goral, Torrance, Greenberg, Battaile, 1984
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My research: 
Modeling and Rendering World

•  Challenge: world is complex
– Complex datasets: micron resolution data to 

building size data
– Complex lighting: volumetric scattering, global 

illumination
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What do I do?
•  Predictive Rendering for high complexity



The Complexity Challenge

Kalabsha temple

Global IlluminationMany Lights

Grand Central Station

Volumetric Effects like Fog Motion Blur



Rendering Problem Formulation

2. Render with VPLs



• Unify illumination  
• Convert to point lights

Kitchen light: area, sun/sky, indirect

Problem: Many-light formulation
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Clusters

Lights
Individual

Lightcuts [SIG’05,’06,SIG’12]

• Scalable rendering of many lights 
• Light Cluster 
• Light Tree 
• Cut 

– Set of nodes that partition L into clusters  
• (a representative per cluster)

#1 #2 #4



Cuts and Representatives
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  Three Cuts  

#1 #2 #4 #1 #3 #4 #1 #4



• For each point, find cut that is perceptually good 
• Start with coarse cut (eg, root node) 

• Test visibility of cluster representative (and estimate 
contribution) 

• Estimate error using conservative analytic error 
bounds 
– Refine if error bound > perceptual metric 
– Perceptual metric 

• Weber’s law: 2% of total energy

Cut

Cut

Cut Selection Algorithm

Cluster
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Grand Central 

1.46M polygons, 143 464 lights 

Area+Sun/sky+Indirect 

Shadow rays/ point: 46 (0.03%)

Lightcuts Results
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What makes 
jade look like jade?
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Answer: how light scatters matters

Soap

Wax

Shine laser and capture photo

w/ Adelson, Gkioulekas, Xiao, Zhao, Zickler
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V

Answer: how light scatters matters

mustard

whole	  milk

shampoo

hand	  cream

coffee

wine

robitussin
olive	  oil curacao

mixed	  soap

milk	  soap

liquid	  clay

reduced	  milk

R

w/ Adelson, Gkioulekas, Xiao, Zhao, Zickler



What makes 
silk look like silk?

velvet look like velvet?
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What makes velvet look like velvet?

•Range of scales: building size to micron resolution
•Rich materials: metals, cloth, marble, jade, glass, food, …

[SIG11, SIG12, SIG13, CACM Research Highlight 2013,TOG15]
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Model = structure + photos

Micro CT image Fabric model

Extend

 + photo to match 
optical properties

w/  Zhao, Marschner, Jakob



Computer graphics

Computer vision

Virtual

Real
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/Materials in the Wild

Goal: to recognize, model and render materials in the wild 
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Mat
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Fur

Wood

Glass

Materials in the Wild: understanding
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Materials in the Wild: recognition

Wood 

Paper Rug ??? ??? 

??? 
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Want to learn more?

• 4670: Computer vision
– images
– 3D reconstruction
– deep learning for scene understanding

• 5625: Interactive computer graphics
– Shadow maps/shadow volumes
– Texturing: theory, advanced
– Subdivision surfaces
– Some animation
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Where do we go from here?

• Industry
– VR: Oculus, Valve, …
– Tech: Intel, NVidia, Microsoft,…
– Movies: Dreamworks, Pixar, Disney…
– Games: EA, Epic, Bungie, …
–CAD/CAM: Boeing, Autodesk,…

• Graduate school
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Thank you!
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