Images

CS 4620 Lecture 38

Announcements

A7 extended by 24 hours

Color displays

- Operating principle: humans are trichromatic
 - match any color with blend of three
 - therefore, problem reduces to producing 3 images and blending
- Additive color
 - blend images by sum
 - e.g. overlapping projection
 - e.g. unresolved dots
 - R, G, B make good primaries

Color displays

CRT: phosphor dot pattern to produce finely interleaved color images

• LCD, LED: interleaved R,G,B pixels

Digital camera

- A raster input device
- Image sensor contains 2D array of photosensors

Digital camera

Color typically captured using color mosaic

Greger et al. 1995]

The eye as a measurement device

- We can model the low-level behavior of the eye by thinking of it as a light-measuring machine
 - -its optics are much like a camera
 - -its detection mechanism is also much like a camera
- Light is measured by the photoreceptors in the retina
 - -they respond to visible light
 - different types respond to different wavelengths

Photoreceptors

- 120 million rods
- 7-8 million cones in each eye
- rods: scotopic
- cones: photopic

Receptor distribution

Cone Responses

- S,M,L cones have broadband spectral sensitivity
- Results in a trichromatic visual system
- S, M, and L are tristimulus values

A simple light detector

- Produces a scalar value (a number) when photons land on it
 - -this value depends strictly on the number of photons detected
 - each photon has a probability of being detected that depends on the wavelength
 - -there is no way to tell the difference between signals caused by light of different wavelengths: there is just a number
- This model works for many detectors:
 - -based on semiconductors (such as in a digital camera)
 - -based on visual photopigments (such as in human eyes)

A simple light detector

$$X = \int n(\lambda)p(\lambda) \, d\lambda$$

Light detection math

- Same math carries over to power distributions
 - -spectum entering the detector has its spectral power distribution (SPD), $s(\lambda)$
 - -detector has its spectral sensitivity or spectral response, $r(\lambda)$

Light detection math

$$X = \int s(\lambda)r(\lambda) d\lambda$$
 or $X = s \cdot r$

- If we think of s and r as vectors, this operation is a dot product (aka inner product)
 - -in fact, the computation is done exactly this way, using sampled representations of the spectra.
 - let λ_i be regularly spaced sample points $\Delta\lambda$ apart; then:

$$\tilde{s}[i] = s(\lambda_i); \tilde{r}[i] = r(\lambda_i)$$

$$\int s(\lambda)r(\lambda) d\lambda \approx \sum_{i} \tilde{s}[i]\tilde{r}[i] \Delta \lambda$$

• this sum is very clearly a dot product

Cone responses to a spectrum s

$$S = \int r_S(\lambda)s(\lambda) d\lambda = r_S \cdot s$$

$$M = \int r_M(\lambda)s(\lambda) d\lambda = r_M \cdot s$$

$$L = \int r_L(\lambda)s(\lambda) d\lambda = r_L \cdot s$$

Colorimetry: mapping light to signals

- Want to map a Physical light description to a Perceptual color sensation
- Basic solution was known and standardized by 1930

Basic fact of colorimetry

- Take a spectrum (which is a function)
- Eye produces three numbers
- This throws away a lot of information!
 - -Quite possible to have two different spectra that have the same S, M, L tristimulus values
 - -Two such spectra are metamers

Chromaticity Diagram

Chromaticity Diagram

Color Gamuts

Monitors/printers can't produce all visible colors

Reproduction is limited to a particular domain

For additive color (e.g. monitor) gamut is the triangle defined by the chromaticities of the three primaries.

Color reproduction

- Have a spectrum s; want to match on RGB monitor
 - -"match" means it looks the same
 - any spectrum that projects to the same point in the visual color space is a good reproduction
- Must find a spectrum that the monitor can produce that is a metamer of s

[Stone 2003]

Basic colorimetric concepts

- Luminance
 - -the overall magnitude of the the visual response to a spectrum (independent of its color)
 - corresponds to the everyday concept "brightness"
 - -determined by product of SPD with the luminous efficiency function V_{λ} that describes the eye's overall ability to detect

light at each wavelength

-e.g. lamps are optimized
to improve their luminous
efficiency (tungsten vs.
fluorescent vs. sodium vapor)

Luminance, mathematically

• Y just has another response curve (like S, M, and L)

$$Y = r_Y \cdot s$$

- $-r_{\gamma}$ is really called " V_{λ} "
- V_{λ} is a linear combination of S, M, and L
 - -Has to be, since it's derived from cone outputs

More basic colorimetric concepts

Chromaticity

- -what's left after luminance is factored out (the color without regard for overall brightness)
- -scaling a spectrum up or down leaves chromaticity alone
- Dominant wavelength
 - -many colors can be matched by white plus a spectral color
 - -correlates to everyday concept "hue"

Purity

- -ratio of pure color to white in matching mixture
- -correlates to everyday concept "colorfulness" or "saturation"

Datatypes for raster images

- Bitmaps: boolean per pixel (I bpp):
 - interp. = black and white; e.g. fax
- Grayscale: integer per pixel:
 - interp. = shades of gray; e.g. black-and-white print
 - precision: usually byte (8 bpp); sometimes 10, 12, or 16 bpp
- Color: 3 integers per pixel:
 - interp. = full range of displayable color; e.g. color print
 - precision: usually byte[3] (24 bpp)
 - sometimes 16 (5+6+5) or 30 or 36 or 48 bpp
- Floating point: more abstract, because no output device has infinite range
 - provides high dynamic range (HDR)
 - represent real scenes independent of display
 - becoming the standard intermediate format in graphics processor

Intensity encoding in images

- What do the numbers in images (pixel values) mean?
 - they determine how bright that pixel is
 - for floating point pixels, they directly give the intensity (in some units) they are linearly related to the intensity
 - for pixels encoded in integers, this mapping is **not direct**
- Transfer function: function that maps input pixel value to luminance of displayed image

$$I = f(n)$$
 $f: [0, N] \rightarrow [I_{\min}, I_{\max}]$

- What determines this function?
 - physical constraints of device or medium
 - desired visual characteristics

Transfer function shape

- Desirable property: the change from one pixel value to the next highest pixel value should not produce a visible contrast
 - otherwise smooth areas of images will show visible bands

an image with severe bandin

- What contrasts are visible?
 - rule of thumb: under good conditions we can notice a 2% change in intensity
 - therefore we generally need smaller
 quantization steps in the darker tones than in the lighter tones
 - most efficient quantization is logarithmic

Transfer function

• Something like this:

Constraints on transfer function

- Maximum displayable intensity, I_{max}
 - how much power can be channeled into a pixel?
 - LCD: backlight intensity, transmission efficiency (<10%)
 - projector: lamp power, efficiency of imager and optics
- Minimum displayable intensity, I_{min}
 - light emitted by the display in its "off" state
 - e.g. stray electron flux in CRT, polarizer quality in LCD
- Viewing flare, k: light reflected by the display
 - very important factor determining image contrast in practice
 - 5% of I_{max} is typical in a normal office environment [sRGB spec]
 - much effort to make very black CRT and LCD screens
 - all-black decor in movie theaters

Dynamic range

- Dynamic range $R_d = I_{\text{max}} / I_{\text{min}}$, or $(I_{\text{max}} + k) / (I_{\text{min}} + k)$
 - determines the degree of image contrast that can be achieved
 - a major factor in image quality
- Ballpark values
 - Desktop display in typical conditions: 20: I
 - Photographic print: 30: I
 - Desktop display in good conditions: 100:1
 - High-end display under ideal conditions: I 000: I
 - Digital cinema projection: I000: I
 - Photographic transparency (directly viewed): I000: I
 - High dynamic range display: 10,000:1

How many levels are needed?

- Depends on dynamic range
 - 2% steps are most efficient:

$$0 \mapsto I_{\min}; 1 \mapsto 1.02I_{\min}; 2 \mapsto (1.02)^2I_{\min}; \dots$$

- log 1.02 is about 1/120, so 120 steps per decade of dynamic range
 - 240 for desktop display
 - 480 to drive HDR display
- If we want to use linear quantization (equal steps)
 - one step must be < 2% (1/50) of I_{min}
 - need to get from ~0 to I_{min} R_d , so need about 50 R_d levels
 - 1500 for a print; 5000 for desktop display; 500,000 for HDR display
- Moral: 8 bits is just barely enough for low-end applications
 - but only if we are careful about quantization

Intensity quantization in practice

- Option I: linear quantization $I(n) = (n/N) I_{\max}$
 - pro: simple, convenient, amenable to arithmetic
 - con: requires more steps (wastes memory)
 - need 12 bits for any useful purpose; more than 16 for HDR
- Option 2: power-law quantization $I(n) = (n/N)^{\gamma} I_{\max}$
 - pro: fairly simple, approximates ideal exponential quantization
 - con: need to linearize before doing pixel arithmetic
 - con: need to agree on exponent
 - 8 bits are OK for many applications; I2 for more critical ones

Why gamma?

- Power-law quantization, or gamma correction is most popular
- Original reason: CRTs are like that
 - intensity on screen is proportional to (roughly) voltage²
- Continuing reason: inertia + memory savings
 - inertia: gamma correction is close enough to logarithmic that there's no sense in changing
 - memory: gamma correction makes 8 bits per pixel an acceptable option

Gamma quantization

Close enough to ideal perceptually uniform exponential

Gamma correction

- Sometimes (often, in graphics) we have computed intensities a that we want to display linearly
- In the case of an ideal monitor with zero black level,

$$I(n) = (n/N)^{\gamma}$$

(where $N = 2^n - 1$ in *n* bits). Solving for *n*:

$$n(I) = NI^{\frac{1}{\gamma}}$$

- This is the "gamma correction" recipe that has to be applied when computed values are converted to 8 bits for output
 - failing to do this (implicitly assuming gamma = I) results in dark, oversaturated images

Gamma correction

corrected for γ lower than display

OK

corrected for γ higher than display

sRGB quantization curve

- The predominant standard for "casual color" in computer displays
 - consistent with older typical practice
 - designed to work well under imperfect conditions
 - these days all monitors are calibrated to sRGB by default
 - in practice, usually defines what your pixel values mean

$$I(C) = \begin{cases} \frac{C}{12.92}, & C \le 0.04045\\ \left(\frac{C+a}{1+a}\right)^{2.4}, & C > 0.04045 \end{cases}$$

$$C = n/N$$

$$a = 0.055$$

w/ prior instructor Steve Marschner

Converting from HDR to LDR

- "High dynamic range" pixels can be arbitrarily bright or dark
- "Low dynamic range" there are limits on the min and max
- Simplest solution: just scale and clamp
- More flexible: introduce a contrast control
- Scale factor a is "exposure"
 - often quoted on a power-of-2 scale