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Ray Tracing 
Light Reflection, Illumination 

Hierarchies, Transforms, Advanced Rendering

CS 4620 Lecture 36

1



© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 36

Adding microgeometry
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Classic reflection behavior

Lambertianglossy specular

ideal specular (mirror)
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Broad modeling approaches

• Empirical expressions
– a long and glorious history…
– you know these: Phong, Ward, Kajiya, etc.

• Microfacet models
– a geometric optics approach for surface reflection
– based on statistical averaging over microgeometry

• Other geometric-optics surface models
– including Oren-Nayar and other diffuse models
– also several grooved-surface models

• Subsurface scattering models
– Hanrahan-Kreuger; diffusion models
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Cook-Torrance BRDF Model

• A microfacet model
– surface modeled as random collection of planar facets
– an incoming ray hits exactly one facet, at random

• Key input: probability distribution of facet angle
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Facet Reflection

• H vector used to define facets that contribute
– L and V determine H; only facets with that normal matter
– reflected light is proportional to number of facets
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Cook-Torrance BRDF Model

• “Specular” term (really glossy, or directional diffuse)
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fr(n, l,v) =
F (l,h)D(h)G(l,v,h)

4|n · l||n · v|
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Cook-Torrance BRDF Model

Facet distribution
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Facet Distribution

• D function describes distribution of H
• Popular choice is due to Beckmann

– derivation based on Gaussian random surface
– for the purposes of this model we take it as given
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Fresnel Reflectance

Cook-Torrance BRDF Model

• Fresnel reflectance for smooth facet
– more light reflected at grazing angles
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fr(n, l,v) =
F (l,h)D(h)G(l,v,h)
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Cook-Torrance BRDF Model

Masking/shadowing
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fr(n, l,v) =
F (l,h)D(h)G(l,v,h)
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Masking and Shadowing
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• Many options; C-T chooses simple 2D analysis:
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G(l,v,h) =

min


1,

2(n · h)(n · v)
v · h ,

2(n · h)(n · l)
v · h
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Model vs. measurement: aluminum

Measured Model
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Rob Cook’s vases
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Sources of illumination

• Point sources
– energy emanating from a single point

• Directional sources
– aka. point sources at infinity

• Area sources
– energy emanating from an area of surface

• Environment illumination
– energy coming from far away

• Light reflected from other objects
– leads to global illumination
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Light reflection: full picture

• all types of reflection reflect all types of illumination
– diffuse, glossy, mirror reflection
– environment, area, point illumination
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incident distribution
(function of direction)

reflected distribution
(function of direction)
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Implementing a bvol hierarchy

• A BoundedSurface can contain a list of Surfaces
• Some of those Surfaces might be more 

BoundedSurfaces
• Voilà! A bounding volume hierarchy

– And it’s all still transparent to the renderer
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BVH construction example
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BVH ray-tracing example
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Ray-slab intersection
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Intersecting intersections

• Each intersection is an interval
• Want last entry point and 

first exit point
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Building a hierarchy

• Top Down vs Bottom Up
• Top down

• Make bbox for whole scene, then split into (maybe 2) parts
– Recurse on parts
– Stop when there are just a few objects in your box

• Bottom Up
• Expensive, but optimal
• Good for static (maybe)
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Building a hierarchy
• How to partition?

– Ideal: clusters
– Practical: partition along axis

• Center partition
– Less expensive, simpler
– Unbalanced tree

• Median partition
– More expensive
– More balanced tree

• Surface area heuristic
– Model: expected cost of ray intersection
– Generally produces best-performing trees
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BVH Intersection

• Trace ray with root node

• If intersection, trace rays with ALL children
– If no intersection, eliminate tests with all children
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Regular space subdivision

• An entirely different approach: uniform grid of cells
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Regular grid example

• Grid divides space, not objects
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Traversing a regular grid
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Non-regular space subdivision

• k-d Tree
– subdivides space, like grid
– adaptive, like BVH
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Implementing acceleration structures 

• Conceptually simple to build acceleration structure into 
scene structure

• Better engineering decision to separate them
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Transforming objects

• In modeling, we’ve seen the usefulness of 
transformations
– How to do the same in RT?

• Take spheres as an example: want to support 
transformed spheres
– Need a new Surface subclass

• Option 1: transform sphere into world coordinates
– Write code to intersect arbitrary ellipsoids

• Option 2: transform ray into sphere’s coordinates
– Then just use existing sphere intersection routine
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Intersecting transformed objects

[S hi
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Implementing RT transforms

• Create wrapper object “TransformedSurface”
– Has a transform T and a reference to a surface S
– To intersect:

• Transform ray to local coords (by inverse of T)
• Call surface.intersect
• Transform hit data back to global coords (by T)

– Intersection point
– Surface normal
– Any other relevant data (maybe none)
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Groups, transforms, hierarchies

• Often it’s useful to transform several objects at once
– Add “SurfaceGroup” as a subclass of Surface
• Has a list of surfaces
• Returns closest intersection

– Opportunity to move ray intersection code here to avoid 
duplication

• With TransformedSurface and SurfaceGroup you can 
put transforms below transforms
– Voilà! A transformation hierarchy.
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A transformation hierarchy

– Common optimization: merge transforms with groups

…

…

…

Group: car

Surface: body

Transform

Surface: tire Surface: hubcap

Transform

Group: wheel assy.

Group: wheel

TransformSurface: brake disc
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Instancing

• Transform objects several ways
– Many models have repeated subassemblies

• Mechanical parts (wheels of car)
• Multiple objects (chairs in classroom, …)

– Nothing stops you from creating two TransformedSurface 
objects that reference the same Surface
• Allowing this makes the transformation tree into a DAG

– (directed acyclic graph)
• Mostly this is transparent to the renderer
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With instancing

…

Group: car

Surface: body

Transform

Transform Transform Transform

Group: wheel

…
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Advanced Ray Tracing
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Basic ray tracing

• Many advanced methods build on the basic ray tracing 
paradigm

• Basic ray tracer: one sample for everything
–one ray per pixel
–one shadow ray for every point light
–one reflection ray, possibly one refraction ray, per 
intersection
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Discontinuities in basic RT

• Perfectly sharp object silhouettes in image
–leads to aliasing problems (stair steps)

• Perfectly sharp shadow edges
–everything looks like it’s in direct sun

• Perfectly clear mirror reflections
–reflective surfaces are all highly polished

• Perfect focus at all distances
–camera always has an infinitely tiny aperture

• Perfectly frozen instant in time (in animation)
–motion is frozen as if by strobe light

42



worth a look:
http://
rainycitytales332.tumblr.com

The Blue Umbrella

• Latest Pixar short
• Made partly to showcase new more 

photorealistic rendering
–much of it based on the ideas in this lecture
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Cause of soft shadows

point lights cast hard shadows
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Cause of soft shadows

area lights cast soft shadows
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Glossy reflection
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Cause of glossy reflection

smooth surfaces produce sharp reflections
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Cause of glossy reflection

rough surfaces produce soft (glossy) reflections
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Cause of focusing effects

what lenses do (roughly)
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Cause of focusing effects

point aperture produces always-sharp focus
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Cause of focusing effects

finite aperture produces limited depth of field
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Motion blur
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Cause of motion blur
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Pixar—Monsters University (2013)
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Creating soft shadows

• For area lights: use many shadow rays
–and each shadow ray gets a different point on the light

• Choosing samples
–general principle: start with uniform in square
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Creating glossy reflections

• Jitter the reflected rays
–Not exactly in mirror direction; add a random offset
–Can work out math to match Phong exactly
–Can do this by jittering the normal if you want
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Depth of field

• Make eye rays start at random points on aperture
–always going toward a point on the focus plane
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Motion blur

• Caused by finite shutter times
–strobing without blur

• Introduce time as a variable throughout the system
–object are hit by rays according to their position at a given 
time

• Then generate rays with times distributed over shutter 
interval
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