Ray Tracing

CS 4620 Lecture 34

Cornell CS4620 Fall 2015 © 2015 Kavita Bala * |

Next few weeks

* This week
— Ray Tracing
— 462 1: Meet with TAs for feedback
— A6 due

* Next week
— Ray Tracing
- TG!

* Last week of classes
— Imaging, Research

— A7 due

© 2015 Kavita Bala
Cornell CS4620 Fall 2015 * Lecture 34 w/ prior instructor Steve Marschner °

Back to ray tracing

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 34

-
-

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 34

Topics

* Ray tracing acceleration structures
— Bounding volumes
— Bounding volume hierarchies
— Uniform spatial subdivision
— Adaptive spatial subdivision

* Transformations in ray tracing
— Transforming objects
— Transformation hierarchies

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 34

Ray tracing acceleration

* Ray tracing is slow. This is bad!

— Ray tracers spend most of their time in ray-surface
intersection methods

* Ways to improve speed
— Make intersection methods more efficient
* Yes, good idea. But only gets you so far
— Call intersection methods fewer times
* Intersecting every ray with every object is wasteful

* Basic strategy: efficiently find big chunks of geometry that
definitely do not intersect a ray

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 34

Bounding volumes

* Quick way to avoid intersections: bound object with a
simple volume
— Object is fully contained in the volume
— If it doesn’t hit the volume, it doesn’t hit the object
— So test bvol first, then test object if it hits

© 2015 Kavita Bala
Cornell CS4620 Fall 2015 * Lecture 34 w/ prior instructor Steve Marschner °

[Glassner 89, Fig 4.5]

Bounding volumes

e Cost: more for hits and near misses, less for far misses

* Worth doing! It depends:

— Cost of bvol intersection test should be small
* Therefore use simple shapes (spheres, boxes, ...)

— Cost of object intersect test should be large
* Bvols most useful for complex objects

— Tightness of fit should be good
* Loose fit leads to extra object intersections
* Tradeoff between tightness and bvol intersection cost

© 2015 Kavita Bala
Cornell CS4620 Fall 2015 * Lecture 34 w/ prior instructor Steve Marschner °

Implementing bounding volume

* Just add new Surface subclass, “BoundedSurface”

— Contains a bounding volume and a reference to a surface
— Intersection method:

* Intersect with bvol, return false for miss
* Return surface.intersect(ray)

— This change is transparent to the renderer (only it might run
faster)

* Note that all Surfaces will need to be able to supply
bounding volumes for themselves

Cornell CS4620 Fall 2015 « Lecture 34 © 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

If it’s worth doing, it’s worth doing

hierarchically!

Bvols around

Bvols around

Bvols arounc

objects may help

groups of ob;

ects will help

parts of com

blex objects will help

Leads to the idea of using bounding volumes all the way
from the whole scene down to groups of a few objects

Cornell CS4620 Fall 2015 ¢ Lecture 34

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Implementing a bvol hierarchy

e A BoundedSurface can contain a list of Surfaces

* Some of those Surfaces might be more
BoundedSurfaces

* Voila! A bounding volume hierarchy
— And it’s all still transparent to the renderer

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 34

BVH construction example

2015 Kavita Bal
Cornell CS4620 Fall 2015 « Lecture 34 w! prior _©2015 Kavita Bala,

BVH ray-tracing example

© 2015 Kavita Bala
Cornell CS4620 Fall 2015 « Lecture 34 wi prior instructor Steve Marschner « 14

BVH Intersection

* Trace ray with root node

* If intersection, trace rays with ALL children
— If no intersection, eliminate tests with all children

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 « Lecture 34 15

Choice of bounding volumes

* Spheres -- easy to intersect, not always so tight

* Axis-aligned bounding boxes (AABBs) -- easy to
intersect, often tighter (esp. for axis-aligned models)

* Oriented bounding boxes (OBBs) -- easy to intersect
(but cost of transformation), tighter for arbitrary
objects

* Computing the bvols
— For primitives -- generally pretty easy

— For groups -- not so easy for OBBs (to do well)
— For transformed surfaces -- not so easy for spheres

© 2015 Kavita Bala
Cornell CS4620 Fall 2015 * Lecture 34 w/ prior instructor Steve Marschner °

Axis alighed bounding boxes

* Probably easiest to implement
* Computing for primitives
— Cube: duh!

— Sphere, cylinder, etc.: pretty obvious
— Groups or meshes: min/max of component parts

 AABBs for transformed surface

— Easy to do conservatively: bbox of the 8 corners of the bbox
of the untransformed surface

* How to intersect them
— Treat them as an intersection of slabs (see Shirley)

© 2015 Kavita Bala
Cornell CS4620 Fall 2015 * Lecture 34 w/ prior instructor Steve Marschner °

Ray-box intersection

* Could intersect with 6 faces individually
* Better way: box is the intersection of 3 slabs

© 2VU15 Kavita Bala
w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 « Lecture 34 18

Intersecting boxes: 2D

e 2D example /max
e 3D is the same! /

%

xXmax

A lymin

te [lemin txmax] —& °
te [[ymin' tymax] T —
te [bmin tmax] N[bymin- [ymax] P -

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 34

Ray-slab intersection

Pz + tscmin dac — Lmin

ta:min — (xmin — p:v)/d:c

Py =+ tymin dy — Ymin
tymin — (ymin — py)/dy

Xmin Xmax

© 2015 Kavita Bala
Cornell CS4620 Fall 2015 ¢ Lecture 34

w/ prior instructor Steve Marschner ¢ 20

Intersecting intersections

ta:enter
txexit
tyenter
tyexit
tenter

texit

Each intersection is an interval

Want last entry point and
first exit point

— min(tacmin) ta:max)

i maX(ta:mina ta:max)

Ymax

= min(tymin, tyma,x) ymin
— maX(tymjn, tymax)
= max(tzenter tyenter)

— mln(ta:exita tyexit) Xmin Xmax

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 « Lecture 34 wi prior instructor Steve Marschner » 2!

Building a hierarchy

* Top Down vs Bottom Up

* Top down
* Make bbox for whole scene, then split into (maybe 2) parts
— Recurse on parts
— Stop when there are just a few objects in your box

* Bottom Up
* |deal: partitions
* Expensive, but optimal
* Good for static (maybe)

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 34

Building a hierarchy

* How to partition?
— |deal: clusters
— Practical: partition along axis
» Center partition
— Less expensive, simpler
— Unbalanced tree
* Median partition
— More expensive
— More balanced tree
* Surface area heuristic
— Model expected cost of ray intersection
— Generally produces best-performing trees

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 « Lecture 34 23

Regular space subdivision

* An entirely different approach: uniform grid of cells

ray

B

Cornell CS4620 Fall 2015 « Lecture 34 © 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Regular grid example

* Grid divides space, not objects

N
A

A

Cornell CS4620 Fall 2015 ¢ Lecture 34

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

25

Traversing a regular grid

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 34

Non-regular space subdivision

* k-dTree
— subdivides space, like grid
— adaptive, like BVH

Indi

A

N
A

Cornell CS4620 Fall 2015 ¢ Lecture 34

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

27

Implementing acceleration structures

* Conceptually simple to build acceleration structure into
scene structure

* Better engineering decision to separate them

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 34

