
© 2015 Kavita Bala • Cornell CS4620 Fall 2015

Ray Tracing

1

CS 4620 Lecture 34

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Next few weeks

• This week
– Ray Tracing
– 4621: Meet with TAs for feedback
– A6 due

• Next week
– Ray Tracing
– TG!

• Last week of classes
– Imaging, Research
– A7 due

2

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Back to ray tracing

3

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34 4

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34 5

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Topics

• Ray tracing acceleration structures
– Bounding volumes
– Bounding volume hierarchies
– Uniform spatial subdivision
– Adaptive spatial subdivision

• Transformations in ray tracing
– Transforming objects
– Transformation hierarchies

6

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Ray tracing acceleration

• Ray tracing is slow. This is bad!
– Ray tracers spend most of their time in ray-surface

intersection methods

• Ways to improve speed
– Make intersection methods more efficient

• Yes, good idea. But only gets you so far
– Call intersection methods fewer times

• Intersecting every ray with every object is wasteful
• Basic strategy: efficiently find big chunks of geometry that

definitely do not intersect a ray

7

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Bounding volumes

• Quick way to avoid intersections: bound object with a
simple volume
– Object is fully contained in the volume
– If it doesn’t hit the volume, it doesn’t hit the object
– So test bvol first, then test object if it hits

[G
la

ss
ne

r
89

, F
ig

 4
.5

]

8

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Bounding volumes

• Cost: more for hits and near misses, less for far misses
• Worth doing? It depends:

– Cost of bvol intersection test should be small
• Therefore use simple shapes (spheres, boxes, …)

– Cost of object intersect test should be large
• Bvols most useful for complex objects

– Tightness of fit should be good
• Loose fit leads to extra object intersections
• Tradeoff between tightness and bvol intersection cost

9

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Implementing bounding volume

• Just add new Surface subclass, “BoundedSurface”
– Contains a bounding volume and a reference to a surface
– Intersection method:

• Intersect with bvol, return false for miss
• Return surface.intersect(ray)

– This change is transparent to the renderer (only it might run
faster)

• Note that all Surfaces will need to be able to supply
bounding volumes for themselves

10

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

If it’s worth doing, it’s worth doing
hierarchically!

• Bvols around objects may help
• Bvols around groups of objects will help
• Bvols around parts of complex objects will help
• Leads to the idea of using bounding volumes all the way

from the whole scene down to groups of a few objects

11

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Implementing a bvol hierarchy

• A BoundedSurface can contain a list of Surfaces
• Some of those Surfaces might be more

BoundedSurfaces
• Voilà! A bounding volume hierarchy

– And it’s all still transparent to the renderer

12

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

BVH construction example

13

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

BVH ray-tracing example

14

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

BVH Intersection

• Trace ray with root node

• If intersection, trace rays with ALL children
– If no intersection, eliminate tests with all children

15

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Choice of bounding volumes

• Spheres -- easy to intersect, not always so tight
• Axis-aligned bounding boxes (AABBs) -- easy to

intersect, often tighter (esp. for axis-aligned models)
• Oriented bounding boxes (OBBs) -- easy to intersect

(but cost of transformation), tighter for arbitrary
objects

• Computing the bvols
– For primitives -- generally pretty easy
– For groups -- not so easy for OBBs (to do well)
– For transformed surfaces -- not so easy for spheres

16

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Axis aligned bounding boxes

• Probably easiest to implement
• Computing for primitives

– Cube: duh!
– Sphere, cylinder, etc.: pretty obvious
– Groups or meshes: min/max of component parts

• AABBs for transformed surface
– Easy to do conservatively: bbox of the 8 corners of the bbox

of the untransformed surface

• How to intersect them
– Treat them as an intersection of slabs (see Shirley)

17

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Ray-box intersection

• Could intersect with 6 faces individually
• Better way: box is the intersection of 3 slabs

18

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Intersecting boxes: 2D

19

• 2D example
• 3D is the same!

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Ray-slab intersection

20

xmin xmax

ymax

ymin

xmin xmax

ymax

ymin

txmin

txmax

(px, py)

(dx, dy)

tymin

tymax

(xmin, ymin)

(xmax, ymax)

xmin xmax

txmin

txmax

(px, py)

(dx, dy)

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

t
xenter

= min(t
xmin

, t
xmax

)

t
xexit

= max(t
xmin

, t
xmax

)

tyenter = min(tymin

, tymax

)

tyexit = max(tymin

, tymax

)

Intersecting intersections

• Each intersection is an interval
• Want last entry point and 

first exit point

21

xmin xmax

txenter

txexit

ymax

ymintyexit

tyenter

xmin xmax

ymax

ymin

txenter

txexittyexit

tyenter

t
enter

= max(t
xenter

, t
yenter

)

t
exit

= min(t
xexit

, t
yexit

)

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Building a hierarchy

• Top Down vs Bottom Up
• Top down

• Make bbox for whole scene, then split into (maybe 2) parts
– Recurse on parts
– Stop when there are just a few objects in your box

• Bottom Up
• Ideal: partitions
• Expensive, but optimal
• Good for static (maybe)

22

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Building a hierarchy
• How to partition?

– Ideal: clusters
– Practical: partition along axis

• Center partition
– Less expensive, simpler
– Unbalanced tree

• Median partition
– More expensive
– More balanced tree

• Surface area heuristic
– Model expected cost of ray intersection
– Generally produces best-performing trees

23

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Regular space subdivision

• An entirely different approach: uniform grid of cells

24

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Regular grid example

• Grid divides space, not objects

25

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Traversing a regular grid

26

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Non-regular space subdivision

• k-d Tree
– subdivides space, like grid
– adaptive, like BVH

27

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Implementing acceleration structures

• Conceptually simple to build acceleration structure into
scene structure

• Better engineering decision to separate them

28

