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Next few weeks

• This week
– Ray Tracing
– 4621: Meet with TAs for feedback
– A6 due

• Next week
– Ray Tracing
– TG!

• Last week of classes
– Imaging, Research
– A7 due
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Back to ray tracing
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Topics

• Ray tracing acceleration structures
– Bounding volumes
– Bounding volume hierarchies
– Uniform spatial subdivision
– Adaptive spatial subdivision

• Transformations in ray tracing
– Transforming objects
– Transformation hierarchies
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Ray tracing acceleration

• Ray tracing is slow.  This is bad!
– Ray tracers spend most of their time in ray-surface 

intersection methods

• Ways to improve speed
– Make intersection methods more efficient

• Yes, good idea.  But only gets you so far
– Call intersection methods fewer times

• Intersecting every ray with every object is wasteful
• Basic strategy: efficiently find big chunks of geometry that 

definitely do not intersect a ray
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Bounding volumes

• Quick way to avoid intersections: bound object with a 
simple volume
– Object is fully contained in the volume
– If it doesn’t hit the volume, it doesn’t hit the object
– So test bvol first, then test object if it hits
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Bounding volumes

• Cost: more for hits and near misses, less for far misses
• Worth doing?  It depends:

– Cost of bvol intersection test should be small
• Therefore use simple shapes (spheres, boxes, …)

– Cost of object intersect test should be large
• Bvols most useful for complex objects

– Tightness of fit should be good
• Loose fit leads to extra object intersections
• Tradeoff between tightness and bvol intersection cost
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Implementing bounding volume

• Just add new Surface subclass, “BoundedSurface”
– Contains a bounding volume and a reference to a surface
– Intersection method:

• Intersect with bvol, return false for miss
• Return surface.intersect(ray)

– This change is transparent to the renderer (only it might run 
faster)

• Note that all Surfaces will need to be able to supply 
bounding volumes for themselves
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If it’s worth doing, it’s worth doing 
hierarchically!

• Bvols around objects may help
• Bvols around groups of objects will help
• Bvols around parts of complex objects will help
• Leads to the idea of using bounding volumes all the way 

from the whole scene down to groups of a few objects
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Implementing a bvol hierarchy

• A BoundedSurface can contain a list of Surfaces
• Some of those Surfaces might be more 

BoundedSurfaces
• Voilà! A bounding volume hierarchy

– And it’s all still transparent to the renderer
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BVH construction example
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BVH ray-tracing example
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BVH Intersection

• Trace ray with root node

• If intersection, trace rays with ALL children
– If no intersection, eliminate tests with all children
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Choice of bounding volumes

• Spheres -- easy to intersect, not always so tight
• Axis-aligned bounding boxes (AABBs) -- easy to 

intersect, often tighter (esp. for axis-aligned models)
• Oriented bounding boxes (OBBs) -- easy to intersect 

(but cost of transformation), tighter for arbitrary 
objects

• Computing the bvols
– For primitives -- generally pretty easy
– For groups -- not so easy for OBBs (to do well)
– For transformed surfaces -- not so easy for spheres
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Axis aligned bounding boxes

• Probably easiest to implement
• Computing for primitives

– Cube: duh!
– Sphere, cylinder, etc.: pretty obvious
– Groups or meshes: min/max of component parts

• AABBs for transformed surface
– Easy to do conservatively: bbox of the 8 corners of the bbox 

of the untransformed surface

• How to intersect them
– Treat them as an intersection of slabs (see Shirley)
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Ray-box intersection

• Could intersect with 6 faces individually
• Better way: box is the intersection of 3 slabs

18



© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Intersecting boxes: 2D
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• 2D example
• 3D is the same!
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Ray-slab intersection
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Intersecting intersections

• Each intersection is an interval
• Want last entry point and 

first exit point
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Building a hierarchy

• Top Down vs Bottom Up
• Top down

• Make bbox for whole scene, then split into (maybe 2) parts
– Recurse on parts
– Stop when there are just a few objects in your box

• Bottom Up
• Ideal: partitions
• Expensive, but optimal
• Good for static (maybe)
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Building a hierarchy
• How to partition?

– Ideal: clusters
– Practical: partition along axis

• Center partition
– Less expensive, simpler
– Unbalanced tree

• Median partition
– More expensive
– More balanced tree

• Surface area heuristic
– Model expected cost of ray intersection
– Generally produces best-performing trees
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Regular space subdivision

• An entirely different approach: uniform grid of cells
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Regular grid example

• Grid divides space, not objects
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Traversing a regular grid
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Non-regular space subdivision

• k-d Tree
– subdivides space, like grid
– adaptive, like BVH

27



© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 34

Implementing acceleration structures 

• Conceptually simple to build acceleration structure into 
scene structure

• Better engineering decision to separate them
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