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Announcements

• Grading A5 (and A6) on Monday after TG

• 4621: one-on-one sessions with TA this Friday
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Quaternions

• Remember that 
–Orientations can be expressed as rotation

• Why?
–Start in a default position (say aligned with z axis)
–New orientation is rotation from default position

–Rotations can be expressed as (axis, angle)

• Quaternions let you express (axis, angle)
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Quaternion for Rotation

• Rotate about axis a by angle  θ
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Rotation Using Quaternion

• A point in space is a quaternion with 0 scalar

• Rotation is computed as follows

• See Buss 3D CG: A mathematical introduction with 
OpenGL, Chapter 7
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Why Quaternions?

• Fast, few operations, not redundant
• Numerically stable for incremental changes
• Composes rotations nicely
• Convert to matrices at the end
• Biggest reason: spherical interpolation
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Interpolating between quaternions

• Why not linear interpolation?
• Need to be normalized

• Does not have a constant rate of rotation

7



© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 33

Spherical Linear Interpolation

• Intuitive interpolation between different orientations
• Nicely represented through quaternions

• Useful for animation

• Given two quaternions, interpolate between them

• Shortest path between two points on sphere

•Geodesic, on Great Circle
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Spherical linear interpolation (“slerp”)
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 = cos
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(q0 · q1)

q(t) =
q0 sin(1� t) + q1 sin t 

sin 

Quaternion Interpolation

• Spherical linear interpolation naturally works in any 
dimension

• Traverses a great arc on the sphere of unit quaternions
Uniform angular rotation velocity about a fixed axis
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Practical issues

• When angle gets close to zero, use small angle 
approximation
–degenerate to linear interpolation

• When angle close to 180, there is no shortest geodesic, 
but can pick one

• q is same rotation as -q 
–if q1 and q2 angle < 90, slerp between them
–else, slerp between q1 and -q2
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Interpolating transformations

• Linear interpolation of matrices is not effective
• leads to shrinkage when interpolating rotations

• One approach: always keep transformations in a 
canonical form (e.g. translate-rotate-scale)

• then the pieces can be interpolated separately
• rotations stay rotations, scales stay scales, all is 

good
• But you might be faced with just a matrix.  What then?
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Decomposing transformations
• A product M = TRS is not hard to take apart

– translation sits in the top right

• If we allow S to be a scale along arbitrary axes 
• M = TRS where

• T is a translation
• R is a rotation
• S is a symmetric matrix (positive definite if no 

reflection)
• Linear algebra name

– Polar decomposition (at least the A = RS part)
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Parameterizing rotations

• Unit quaternions
A 4D representation (like 3D unit vectors for 2D sphere)
Good choice for interpolating rotations

• These are first examples of motion control
Matrix = deformation
Angles/quaternion = animation controls
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The artistic process of animation

• What are animators trying to do?

• "Principles of Traditional Animation Applied to 3D 
Computer Graphics,“ SIGGRAPH'87, by John Lasseter 

• Widely cited set of principles laid out by Frank 
Thomas and Ollie Johnston in The Illusion of Life (1981)

• The following slides follow Michael Comet’s examples:  
www.comet-cartoons.com
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Animation principles: timing

• Speed of an action is crucial to the impression it 
makes

examples with same keyframes, different times:

60 fr: looking around 30 fr: “no” 5 fr: just been hit
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Animation principles: ease in/out
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straight linear interp. ease in/out

• Real objects do not start and stop suddenly
animation parameters shouldn’t either

a little goes a long way (just a few frames acceleration or 
deceleration for “snappy” motions)
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Animation principles: moving in arcs
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• Real objects also don’t move in straight lines
generally curves are more graceful and realistic
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Animation principles: anticipation
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• Most actions are preceded by some kind of “wind-up”
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Animation principles: exaggeration
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• Animation is not about exactly modeling reality
• Exaggeration is very often used for emphasis
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Animation principles: squash & stretch
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• Objects do not remain perfectly rigid as they move
• Adding stretch with motion and squash with impact:

models deformation of soft objects
indicates motion by simulating exaggerated “motion blur”
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Animation principles: follow through
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• We’ve seen that objects don’t start suddenly
• They also don’t stop on a dime
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Anim. principles: overlapping action
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• Usually many actions are happening at once
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Animation principles: staging
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• Want to produce clear, good-looking 2D images
need good camera angles, set design, and character 
positions
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Principles at work: weight
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Extended example: Luxo, Jr.
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Computer-generated  
motion
• Interesting aside: many 

principles of character 
animation follow indirectly  
from physics

• Anticipation, follow-through,  
and many other effects 
can be produced by simply 
minimizing physical energy

• Seminal paper: “Spacetime  
Constraints” by Witkin and 
Kass in SIGGRAPH 1988
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• Forward kinematics
– Describe positions of body parts as fn of joint angles
– Body parts: bones

• Inverse kinematics
– Constrain locations for bones and solve for joint angles
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Forward Kinematics

• Articulated body
• Hierarchical transforms

• Comes from robotics
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Rigid Links and Joint Structure

• Links connected by joints
Joints are purely rotational (single DOF)
Links form a tree (no loops)
End links have end effectors
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Basic surface deformation methods

• Mesh skinning: deform a mesh based on an underlying 
skeleton

• Blend shapes: make a mesh by combining several meshes
• Both use simple linear algebra

Easy to implement—first thing to try
Fast to run—used in games

• The simplest tools in the offline animation toolbox 

38



© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 33

Mesh skinning

• A simple way to deform a surface to follow a skeleton
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Skinning

• Embed a skeleton into a character mesh
• Animate “bones”

– Change joint angles over time
– Key framing, etc. 

• Bind skin vertices to bones
– Animate skeleton
– Skin will move with it
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Mesh skinning math: setup

• Surface has control points pi
Triangle vertices, spline control points, subdiv base vertices

• Each bone has a transformation matrix Mj
Normally a rigid motion

• Every point–bone pair has a weight wij
In practice only nonzero for small # of nearby bones
The weights are provided by the user
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• Colored tris 
attached to one 
bone

• Black to > one bone 
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 James & Twigg, Skinning Mesh Animations, 2005, used with permission from ACM, Inc.
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Mesh skinning math

• Deformed position of a point is a weighted sum
of the positions determined by each bone’s transform 
alone
weighted by that vertex’s weight for that bone
wij: How much should vertex i move with bone j
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Mesh skinning

• Simple and fast to compute
Can even compute in the vertex stage of a graphics 
pipeline

• Used heavily in games
• One piece of the toolbox for offline animation

Many other deformers also available
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Mesh skinning: classic problems

• Surface collapses on the inside of bends and in the 
presence of strong twists

Average of two rotations is not a rotation!
Add more bones to keep adjacent bones from being too 
different, or change the blending rules.
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Blend shapes

• Another very simple surface control scheme
• Based on interpolating among several key poses

Aka. blend shapes or morph targets
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Blend shapes math

• Simple setup
User provides key shapes—that is, a position for every 
control point in every shape: pij for point i, shape j

Per frame: user provides a weight wj for each key shape

• Must sum to 1.0

• Computation of deformed shape

• Works well for relatively small motions
Often used for facial animation
Runs in real time; popular for games
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Animation

• Key frame

• Motion capture

• Physics-based
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