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What is animation?

• Modeling = specifying shape
• using all the tools we’ve seen: hierarchies, meshes, 

curved surfaces…

• Animation = specifying shape as a function of time
• just modeling done once per frame?
• yes, but need smooth, concerted movement
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Keyframes in hand-drawn animation

• End goal: a drawing per frame, with nice smooth motion
• “Straight ahead” is drawing frames in order 

• But it is hard to get a character to land at a particular pose at a 
particular time

• Instead use key frames to plan out the action
• draw important poses  

first, then fill in the  
in-betweens

3animation by Ollie Johnston, © Disney
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Keyframes in computer animation

• Just as with hand-drawn animation, adjusting the model 
from scratch for every frame would be tedious and 
difficult

• Same solution: animator establishes the keyframes, 
software fills in the in-betweens

• Two key ideas of computer animation:
• create high-level controls for adjusting geometry
• interpolate these controls over time between keyframes
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The most basic animation control

• Affine transformations position things in modeling
• Time-varying affine transformations move things 

around in animation
• A hierarchy of time-varying transformations is the 

main workhorse of animation
• and the basic framework within which all the more 

sophisticated techniques are built
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Keyframe animation
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Interpolating transformations

• Move a set of points by applying an affine 
transformation

• How to animate the transformation over time?
- Interpolate the matrix entries from keyframe to 
keyframe?
• This is fine for translations but bad for rotations
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Animation

• Industry production process leading up to animation
• What animation is
• How animation works (very generally)
• Artistic process of animation
• Further topics in how it works
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Approaches to animation

• Straight ahead
Draw/animate one frame at a time
Can lead to spontaneity, but is hard to get exactly what 
you want

• Pose-to-pose
Top-down process: 

• Plan shots using storyboards
• Plan key poses first
• Finally fill in the in-between frames
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Pose-to-pose animation planning

– First work out poses that are key to the story
– Next fill in animation in between

10



© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Keyframe animation

• Keyframing is the technique used for pose-to-pose 
animation

Head animator draws key poses—just enough to indicate 
what the motion is supposed to be
Assistants do “in-betweening” and draws the rest of the 
frames
In computer animation substitute “user” and “animation 
software”

Interpolation is the main operation
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Walk cycle
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Controlling geometry conveniently

• Could animate by moving every control point at every 
keyframe

This would be labor intensive
It would also be hard to get smooth, consistent motion

• Better way: animate using smaller set of meaningful 
degrees of freedom (DOFs)

Modeling DOFs are inappropriate for animation
• E.g. “move one square inch of left forearm”

Animation DOFs need to be higher level
• E.g. “bend the elbow”
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Character with DOFs
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Rigged character
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• Surface is deformed by a 
set of bones

• Bones are in turn 
controlled by a smaller set 
of controls

• The controls are useful, 
intuitive DOFs for an 
animator to use
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Keyframe animation

• Keyframing is the technique used for pose-to-pose 
animation
–User creates key poses—just enough to indicate what the 
motion is supposed to be

–Interpolate between the poses
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Rigid motion: the simplest deformation

• Move a set of points by applying an affine transformation
• How to animate the transformation over time?

–Interpolate the matrix entries from keyframe to keyframe?
• Translation: ok

– start location, end location, interpolate
• Rotation: not so good
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Rigid motion: the simplest deformation
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Parameterizing rotations

• Euler angles
–Rotate around x, then y, then z
–Problem: gimbal lock

• If two axes coincide, you  
lose one DOF

• Unit quaternions
–A 4D representation
–Good choice for interpolating rotations
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Quaternions

• Remember that 
–Orientations can be expressed as rotation

• Why?
–Start in a default position (say aligned with z axis)
–New orientation is rotation from default position

–Rotations can be expressed as (axis, angle)

• Quaternions let you express (axis, angle)
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Quaternions for Rotation

• A quaternion is an extension of complex numbers

• Review of complex numbers
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Quaternion for Rotation

• Rotate about axis a by angle  θ
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Quaternion Properties

• Linear combination of 1, i, j, k

23

• Each of i, j and k are three square roots of –1
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Review complex numbers

• Cross-multiplication is like cross product
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• Quaternion is extension of complex number in 4D space

• Multiplication

ONB in quaternions
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Quaternion Properties

• Associative

• Not commutative

• Unit quaternion
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Quaternion for Rotation

• Rotate about axis a by angle  θ

• Note: unit quaternion
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Rotation Using Quaternion

• A point in space is a quaternion with 0 scalar
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Rotation Using Quaternion

• A point in space is a quaternion with 0 scalar

• Rotation is computed as follows

• See Buss 3D CG: A mathematical introduction with 
OpenGL, Chapter 7

30



© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Matrix for quaternion
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Rotation Using Quaternion

• Composing rotations
• q1 and q2 are two rotations

• First, q1 then q2
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Why Quaternions?

• Fast, few operations, not redundant
• Numerically stable for incremental changes
• Composes rotations nicely
• Convert to matrices at the end
• Biggest reason: spherical interpolation
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Interpolating between quaternions

•Why not linear interpolation?
•Need to be normalized

• Does not have a constant rate of rotation
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Spherical Linear Interpolation

• Intuitive interpolation between different orientations
•Nicely represented through quaternions

• Useful for animation

• Given two quaternions, interpolate between them

• Shortest path between two points on sphere

•Geodesic, on Great Circle
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Spherical linear interpolation (“slerp”)
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 = cos

�1
(q0 · q1)

q(t) =
q0 sin(1� t) + q1 sin t 

sin 

Quaternion Interpolation

• Spherical linear interpolation naturally works in any 
dimension

• Traverses a great arc on the sphere of unit 
quaternions

Uniform angular rotation velocity about a fixed axis
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Practical issues

• When angle gets close to zero, use small angle 
approximation
–degenerate to linear interpolation

• When angle close to 180, there is no shortest geodesic, 
but can pick one

• q is same rotation as -q 
–if q1 and q2 angle < 90, slerp between them
–else, slerp between q1 and -q2

38


