
© 2015 Kavita Bala • Cornell CS4620 Fall 2015

Animation

1

CS 4620 Lecture 32

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

What is animation?

• Modeling = specifying shape
• using all the tools we’ve seen: hierarchies, meshes,

curved surfaces…

• Animation = specifying shape as a function of time
• just modeling done once per frame?
• yes, but need smooth, concerted movement

2

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Keyframes in hand-drawn animation

• End goal: a drawing per frame, with nice smooth motion
• “Straight ahead” is drawing frames in order

• But it is hard to get a character to land at a particular pose at a
particular time

• Instead use key frames to plan out the action
• draw important poses  

first, then fill in the  
in-betweens

3animation by Ollie Johnston, © Disney

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Keyframes in computer animation

• Just as with hand-drawn animation, adjusting the model
from scratch for every frame would be tedious and
difficult

• Same solution: animator establishes the keyframes,
software fills in the in-betweens

• Two key ideas of computer animation:
• create high-level controls for adjusting geometry
• interpolate these controls over time between keyframes

4

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

The most basic animation control

• Affine transformations position things in modeling
• Time-varying affine transformations move things

around in animation
• A hierarchy of time-varying transformations is the

main workhorse of animation
• and the basic framework within which all the more

sophisticated techniques are built

5

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Keyframe animation

[B
ry

ce
 T

ut
or

ia
l h

tt
p:

//w
w

w
.c

ad
tu

to
r.n

et
/d

d/
br

yc
e/

an
im

/a
ni

m
.h

tm
l]

6

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Interpolating transformations

• Move a set of points by applying an affine
transformation

• How to animate the transformation over time?
- Interpolate the matrix entries from keyframe to
keyframe?
• This is fine for translations but bad for rotations

7

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Animation

• Industry production process leading up to animation
• What animation is
• How animation works (very generally)
• Artistic process of animation
• Further topics in how it works

8

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Approaches to animation

• Straight ahead
Draw/animate one frame at a time
Can lead to spontaneity, but is hard to get exactly what
you want

• Pose-to-pose
Top-down process:

• Plan shots using storyboards
• Plan key poses first
• Finally fill in the in-between frames

9

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Pose-to-pose animation planning

– First work out poses that are key to the story
– Next fill in animation in between

10

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Keyframe animation

• Keyframing is the technique used for pose-to-pose
animation

Head animator draws key poses—just enough to indicate
what the motion is supposed to be
Assistants do “in-betweening” and draws the rest of the
frames
In computer animation substitute “user” and “animation
software”

Interpolation is the main operation

11

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Walk cycle

[C
hr

is
to

ph
er

 L
ut

z
ht

tp
://

w
w

w
.a

ni
m

at
io

ns
ni

pp
et

s.
co

m
]

12

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Controlling geometry conveniently

• Could animate by moving every control point at every
keyframe

This would be labor intensive
It would also be hard to get smooth, consistent motion

• Better way: animate using smaller set of meaningful
degrees of freedom (DOFs)

Modeling DOFs are inappropriate for animation
• E.g. “move one square inch of left forearm”

Animation DOFs need to be higher level
• E.g. “bend the elbow”

13

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Character with DOFs

[G
re

en
be

rg
/P

el
la

ci
ni

 |
C

IS
 5

65
]

14

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Rigged character

[C
IS

 5
65

 s
ta

ff]

• Surface is deformed by a
set of bones

• Bones are in turn
controlled by a smaller set
of controls

• The controls are useful,
intuitive DOFs for an
animator to use

15

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Keyframe animation

• Keyframing is the technique used for pose-to-pose
animation
–User creates key poses—just enough to indicate what the
motion is supposed to be

–Interpolate between the poses

16

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Rigid motion: the simplest deformation

• Move a set of points by applying an affine transformation
• How to animate the transformation over time?

–Interpolate the matrix entries from keyframe to keyframe?
• Translation: ok

– start location, end location, interpolate
• Rotation: not so good

17

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Rigid motion: the simplest deformation

18

start end

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Parameterizing rotations

• Euler angles
–Rotate around x, then y, then z
–Problem: gimbal lock

• If two axes coincide, you  
lose one DOF

• Unit quaternions
–A 4D representation
–Good choice for interpolating rotations

19

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Quaternions

• Remember that
–Orientations can be expressed as rotation

• Why?
–Start in a default position (say aligned with z axis)
–New orientation is rotation from default position

–Rotations can be expressed as (axis, angle)

• Quaternions let you express (axis, angle)

20

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Quaternions for Rotation

• A quaternion is an extension of complex numbers

• Review of complex numbers

21

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Quaternion for Rotation

• Rotate about axis a by angle θ

22

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Quaternion Properties

• Linear combination of 1, i, j, k

23

• Each of i, j and k are three square roots of –1

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Review complex numbers

• Cross-multiplication is like cross product

24

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32 25

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

• Quaternion is extension of complex number in 4D space

• Multiplication

ONB in quaternions

26

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Quaternion Properties

• Associative

• Not commutative

• Unit quaternion

27

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Quaternion for Rotation

• Rotate about axis a by angle θ

• Note: unit quaternion

28

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Rotation Using Quaternion

• A point in space is a quaternion with 0 scalar

29

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Rotation Using Quaternion

• A point in space is a quaternion with 0 scalar

• Rotation is computed as follows

• See Buss 3D CG: A mathematical introduction with
OpenGL, Chapter 7

30

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Matrix for quaternion

31

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Rotation Using Quaternion

• Composing rotations
• q1 and q2 are two rotations

• First, q1 then q2

32

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Why Quaternions?

• Fast, few operations, not redundant
• Numerically stable for incremental changes
• Composes rotations nicely
• Convert to matrices at the end
• Biggest reason: spherical interpolation

33

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Interpolating between quaternions

•Why not linear interpolation?
•Need to be normalized

• Does not have a constant rate of rotation

34

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Spherical Linear Interpolation

• Intuitive interpolation between different orientations
•Nicely represented through quaternions

• Useful for animation

• Given two quaternions, interpolate between them

• Shortest path between two points on sphere

•Geodesic, on Great Circle

35

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Spherical linear interpolation (“slerp”)

36

v0

v1

v(t)

β
α

v0

v1

v(t)

β
α

π – ψ π – ψ

β
α

v0

v1

v(t)

β
α

π – ψ π – ψ

β
α

w0

w 1

v(t) = w0v0 + w1v1

sin↵

w1
=

sin�

w0
=

sin(⇡ �)

1

= sin

w0 = sin�/ sin

w1 = sin↵/ sin

 = cos

�1
(v0 · v1)

↵+ � =

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

 = cos

�1
(q0 · q1)

q(t) =
q0 sin(1� t) + q1 sin t

sin

Quaternion Interpolation

• Spherical linear interpolation naturally works in any
dimension

• Traverses a great arc on the sphere of unit
quaternions

Uniform angular rotation velocity about a fixed axis

37

© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 32

Practical issues

• When angle gets close to zero, use small angle
approximation
–degenerate to linear interpolation

• When angle close to 180, there is no shortest geodesic,
but can pick one

• q is same rotation as -q
–if q1 and q2 angle < 90, slerp between them
–else, slerp between q1 and -q2

38

