Subdivision Surfaces

CS 4620 Lecture 31

Cornell CS4620 Fall 2015

© 2015 Kavita Bala • 1

Administration

- A5 due on Friday
- Dreamworks visiting Thu/Fri
- Rest of class
 - Surfaces, Animation, Rendering

Subdivision curves

- Key idea: let go of the polynomials as the definition of the curve, and let the refinement rule define the curve
- Curve is defined as the limit of a refinement process
 - properties of curve depend on the rules
 - some rules make polynomial curves, some don't
 - complexity shifts from implementations to proofs

Introduction: corner cutting

- Piecewise linear curve too jagged for you? Lop off the corners!
 - results in a curve with twice as many corners
- Still too jagged? Cut off the new corners
 - process converges
 to a smooth curve
 - Chaikin's algorithm

http://www.multires.caltech.edu/ teaching/demos/java/chaikin.htm

© 2015 Kavita Bala w/ prior instructor Steve Marschner • 4

Corner cutting in equations

- New points are linear combinations of old ones lacksquare
- Different treatment for odd-numbered and even- \bullet numbered points.

Subdivision for B-splines

• Control vertices of refined spline are linear combinations of the c.v.s of the coarse spline

Drawing a picture of the rule

 Conventionally illustrate subdivision rules as a "mask" that you match against the neighborhood

– often implied denominator = sum of weights

© 2015 Kavita Bala w/ prior instructor Steve Marschner • 7

Cubic B-Spline

[Stanford CS468 Fall 2010 slides]

Playing with the rules

- Once a curve is *defined* using subdivision we can customize its behavior by making exceptions to the rules.
- Example: handle endpoints differently
- Resulting curve is a uniform B-spline in the middle, but near the exceptional points it is something different.
 - it might not be a polynomial
 - but it is still linear, still has basis functions
 - the three coordinates of a surface point are still separate

ubdivision defines a smooth curve or surface as

[Schröder & Zorin SIGGRAPH 2000 course 23]

Subdivision surfaces

Figure 2.2: Example of subdivision for a surface, showing 3 successive levels of refinement. On the left an initial triangular mesh approximating the surface. Each triangle is split into 4 according to a particular subdivision rule (middle). On the right the mesh is subdivided in this fashion once again.

Generalizing from curves to surfaces

- Two parts to subdivision process
- Subdividing the mesh (computing new topology)
 For curves: replace every segment with two segments
 - For surfaces: replace every face with some new faces
- Positioning the vertices (computing new geometry)
 - For curves: two rules (one for odd vertices, one for even)
 - New vertex's position is a weighted average of positions of old vertices that are nearby along the sequence
 - For surfaces: two kinds of rules (still called odd and even)
 - New vertex's position is a weighted average of positions of old vertices that are nearby in the mesh

[Schröder & Zorin SIGGRAPH 2000 course 23]

Subdivision of meshes

- Quadrilaterals
 Catmull-Clark 1978
- Triangles
 Loop 1987

Face split for triangles

© 2015 Kavita Bala w/ prior instructor Steve Marschner • 13

Loop regular rules

© 2015 Kavita Bala w/ prior instructor Steve Marschner • 14

Catmull-Clark regular rules

Loop with creases

Geri's Game

- Pixar short film to test subdivision in production
 - Catmull-Clark (quad mesh) surfaces
 - complex geometry
 - extensive use of creases
 - subdivision surfaces to support cloth dynamics

Representing geometry

- Volumes
 - CSG (Constructive Solid Geometry)
 - apply boolean operations on solids
 - simple to define
 - simple to compute in some cases
 - [e.g. ray tracing, implicit surfaces]

Specific surface representations

- Isosurface of volume data
 - implicit representation
 - function defined by regular samples on a 3D grid
 - (like an image but in 3D)
 - example uses:
 - medical imaging
 - numerical simulation

Modeling

• Curves

• Surfaces

• Volumes

Matrix form of spline

$$\mathbf{f}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$

 $\mathbf{f}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

© 2015 Kavita Bala w/ prior instructor Steve Marschner • 22

How splines depend on their controls

- Each coordinate is separate
 - the function x(t) is determined solely by the x coordinates of the control points
 - this means ID, 2D, 3D, ... curves are all really the same
- Spline curves are **linear** functions of their controls
 - moving a control point two inches to the right moves x(t) twice as far as moving it by one inch
- x(t), for fixed t, is a linear combination (weighted sum) of the controls' x coordinates
- f(t), for fixed t, is a linear combination (weighted sum) of the controls