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Administration

• A5 due on Friday

• Dreamworks visiting Thu/Fri

• Rest of class
– Surfaces,  Animation, Rendering
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Subdivision curves

• Key idea: let go of the polynomials as the definition of 
the curve, and let the refinement rule define the curve

• Curve is defined as the limit of a refinement process
– properties of curve depend on the rules
– some rules make polynomial curves, some don’t
– complexity shifts from implementations to proofs
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Introduction: corner cutting

• Piecewise linear curve too jagged for you? Lop off the 
corners!
– results in a curve with twice as many corners

• Still too jagged? Cut off  
the new corners
– process converges 

to a smooth curve
– Chaikin’s algorithm
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http://www.multires.caltech.edu/
teaching/demos/java/chaikin.htm
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Corner cutting in equations

• New points are linear combinations of old ones
• Different treatment for odd-numbered and even-

numbered points.
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Subdivision for B-splines

• Control vertices of refined spline are linear 
combinations of the c.v.s of the coarse spline

ODD EVEN
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Drawing a picture of the rule

• Conventionally illustrate subdivision rules as a “mask” 
that you match against the neighborhood
– often implied denominator = sum of weights
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Cubic B-SplineCubic B Spline

even odd
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[Stanford CS468 Fall 2010 slides]
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Playing with the rules

• Once a curve is defined using subdivision we can 
customize its behavior by making exceptions to the 
rules.

• Example: handle endpoints differently
• Resulting curve is a uniform B-spline in the middle, but 

near the exceptional points it is something different.
– it might not be a polynomial
– but it is still linear, still has basis functions
– the three coordinates of a surface point are still separate
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From curves to surfaces
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SubdivisionSubdivision 

“Subdivision defines a smooth curve or surface asSubdivision defines a smooth curve or surface as 
the limit of a sequence of successive 
refinements”refinements
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Subdivision surfaces
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Generalizing from curves to surfaces

• Two parts to subdivision process
• Subdividing the mesh (computing new topology)

– For curves: replace every segment with two segments
– For surfaces: replace every face with some new faces

• Positioning the vertices (computing new geometry)
– For curves: two rules (one for odd vertices, one for even)

• New vertex’s position is a weighted average of positions 
of old vertices that are nearby along the sequence

– For surfaces: two kinds of rules (still called odd and even)
• New vertex’s position is a weighted average of positions 

of old vertices that are nearby in the mesh
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Subdivision of meshes

• Quadrilaterals
– Catmull-Clark 1978

• Triangles
– Loop 1987
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Loop regular rules

[S
ch

rö
de

r 
&

 Z
or

in
 S

IG
G

R
A

PH
 2

00
0 

co
ur

se
 2

3]

14



© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 31

Catmull-Clark regular rules
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Loop with creases

[H
ug

ue
s 

H
op

pe
]

16



© 2015 Kavita Bala
w/ prior instructor Steve Marschner • Cornell CS4620 Fall 2015 • Lecture 31

Geri’s Game

• Pixar short film to test  
subdivision in production
– Catmull-Clark (quad mesh)  

surfaces
– complex geometry
– extensive use of creases
– subdivision surfaces to support  

cloth dynamics
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Representing geometry

• Volumes
– CSG (Constructive Solid Geometry)

• apply boolean operations on solids
• simple to define
• simple to compute in some cases

– [e.g. ray tracing, implicit surfaces]
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Specific surface representations

• Isosurface of volume data
– implicit representation
– function defined by  

regular samples on a 
3D grid
• (like an image but  

in 3D)
– example uses:

• medical imaging
• numerical simulation
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Modeling

• Curves

• Surfaces

• Volumes
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Matrix form of spline
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How splines depend on their controls

• Each coordinate is separate
– the function x(t) is determined solely by the x coordinates of 

the control points
– this means 1D, 2D, 3D, … curves are all really the same

• Spline curves are linear functions of their controls
– moving a control point two inches to the right moves x(t) 

twice as far as moving it by one inch
– x(t), for fixed t, is a linear combination (weighted sum) of the 

controls’ x coordinates
– f(t), for fixed t, is a linear combination (weighted sum) of the 

controls
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