Subdivision Surfaces

CS 4620 Lecture 3I

Administration

- A5 due on Friday
- Dreamworks visiting Thu/Fri
- Rest of class
- Surfaces, Animation, Rendering

Subdivision curves

- Key idea: let go of the polynomials as the definition of the curve, and let the refinement rule define the curve
- Curve is defined as the limit of a refinement process
- properties of curve depend on the rules
- some rules make polynomial curves, some don't
- complexity shifts from implementations to proofs

(C) 2015 Kavita Bala
w/ prior instructor Steve Marschner •

Introduction: corner cutting

- Piecewise linear curve too jagged for you? Lop off the corners!
- results in a curve with twice as many corners
- Still too jagged? Cut off the new corners
- process converges
to a smooth curve
- Chaikin's algorithm
http://www.multires.caltech.edu/ teaching/demos/java/chaikin.htm

Corner cutting in equations

- New points are linear combinations of old ones
- Different treatment for odd-numbered and evennumbered points.

$$
\begin{array}{r}
p_{2 i}^{k}=\left(3 p_{i}^{k-1}+p_{i+1}^{k-1}\right) / 4 \\
p_{2 i+1}^{k}=\left(p_{i}^{k-1}+3 p_{i+1}^{k-1}\right) / 4 \\
\\
\begin{array}{c}
\text { © 2015 Kavita Bala } \\
\text { w/rior instructor Steve Marschner. } 5
\end{array}
\end{array}
$$

Subdivision for B-splines

- Control vertices of refined spline are linear combinations of the c.v.s of the coarse spline

ODD

EVEN

Drawing a picture of the rule

- Conventionally illustrate subdivision rules as a "mask" that you match against the neighborhood
- often implied denominator = sum of weights

even

corner-cutting
odd

Cubic B-Spline

odd

[Stanford CS468 Fall 2010 slides]

Playing with the rules

- Once a curve is defined using subdivision we can customize its behavior by making exceptions to the rules.
- Example: handle endpoints differently
- Resulting curve is a uniform B-spline in the middle, but near the exceptional points it is something different.
- it might not be a polynomial
- but it is still linear, still has basis functions
- the three coordinates of a surface point are still separate

From curves to surfaces

Subdivision surfaces

Figure 2.2: Example of subdivision for a surface, showing 3 successive levels of refinement. On the left an initial triangular mesh approximating the surface. Each triangle is split into 4 according to a particular subdivision rule (middle). On the right the mesh is subdivided in this fashion once again.

Generalizing from curves to surfaces

- Two parts to subdivision process
- Subdividing the mesh (computing new topology)
- For curves: replace every segment with two segments
- For surfaces: replace every face with some new faces
- Positioning the vertices (computing new geometry)
- For curves: two rules (one for odd vertices, one for even)
- New vertex's position is a weighted average of positions of old vertices that are nearby along the sequence
- For surfaces: two kinds of rules (still called odd and even)
- New vertex's position is a weighted average of positions of old vertices that are nearby in the mesh

Subdivision of meshes

- Quadrilaterals
- Catmull-Clark 1978
- Triangles
- Loop I987

Loop regular rules

[Schröder \& Zorin SIGGRAPH 2000 course 23]

Catmull-Clark regular rules

Loop with creases

[Hugues Hoppe]

Geri's Game

- Pixar short film to test subdivision in production
- Catmull-Clark (quad mesh) surfaces
- complex geometry
- extensive use of creases
- subdivision surfaces to support cloth dynamics

Representing geometry

- Volumes
- CSG (Constructive Solid Geometry)
- apply boolean operations on solids
- simple to define
- simple to compute in some cases
- [e.g. ray tracing, implicit surfaces]

Specific surface representations

- Isosurface of volume data
- implicit representation
- function defined by
regular samples on a 3D grid
- (like an image but in 3D)
- example uses:
- medical imaging
- numerical simulation

Modeling

- Curves

- Surfaces
- Volumes

Matrix form of spline

$$
\mathbf{f}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}
$$

$$
\mathbf{f}(t)=b_{0}(t) \mathbf{p}_{0}+b_{1}(t) \mathbf{p}_{1}+b_{2}(t) \mathbf{p}_{2}+b_{3}(t) \mathbf{p}_{3}
$$

How splines depend on their controls

- Each coordinate is separate
- the function $x(t)$ is determined solely by the x coordinates of the control points
- this means ID, 2D, 3D, ... curves are all really the same
- Spline curves are linear functions of their controls
- moving a control point two inches to the right moves $x(t)$ twice as far as moving it by one inch
$-x(t)$, for fixed t, is a linear combination (weighted sum) of the controls' x coordinates
- $f(t)$, for fixed t, is a linear combination (weighted sum) of the controls

