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Administration

e A4 and PPA2 demos
— Today

* A5 due on Friday

* Dreamworks visiting Thu/Fri

* Rest of class
— Surfaces, Animation, Rendering
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Modeling in 3D

* Representing subsets of 3D space
— volumes (3D subsets)
— surfaces (2D subsets)
— curves (1D subsets)
— points (0D subsets)
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Representing geometry

 |n order of dimension...
 Points: trivial case

* Curves
— normally use parametric representation
— line—just a point and a vector (like ray in ray tracer)
* polylines (approximation scheme for drawing)

— more general curves: usually use splines

* p(t) is from R to R3
* p is defined by piecewise polynomial functions
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Representing geometry

* Surfaces

— implicit and parametric representations both useful

— example: plane
* implicit: vector from point perpendicular to normal
e parametric: point plus scaled tangents

— example: sphere
* implicit: distance from center equals r
* parametric: write out in spherical coordinates

— messiness of parametric form not unusual

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 30



Specific surface representations

* Parametric spline surfaces
— extrusions
— surfaces of revolution
— generalized cylinders
— spline patches
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From curves to surfaces

* So far have discussed spline curves in 2D

— it turns out that this already provides mathematical
machinery for several ways of building curved surfaces

* Building surfaces from 2D curves
— extrusions and surfaces of revolution

* Building surfaces from 2D and 3D curves
— generalized swept surfaces

* Building surfaces from spline patches
— generalizing spline curves to spline patches
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Extrusions

 Given a spline curve C' € R?, define S € R? by
S=C x|a,b]
* This produces a “tube” with the given cross section

— Circle: cylinder;“L"’: shelf bracket; “I": I beam

* It is parameterized by the spline t and the interval [q, b]
s(t, ) = [ca(t), cy(t), s]"

Pire e P2

Q) y

P(U) p(u' V)
P, ® ®p,
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Surfaces of revolution

Axis of

* Take a 2D curve and spin it Rotation
around an axis Pre oP:

* Given curve c(t) in the plane, Q
the surface is defined easily

in cylindrical coordinates:

S(t,S) — (Tv P, Z) — (Cw(t)vsvcy(t)) =
— the torus is an example
in which the curve ¢ et

is a circle

(b)
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Swept surfaces

» Surface defined by a cross section moving along a spine

* Simple version:a single 3D curve for spine and a single
2D curve for the cross section
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Generalized cylinders

* General swept surfaces
— varying radius
— varying cross-section
— curved axis
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From curves to surface patches

e Curve was sum of weighted ID basis functions

* Surface is sum of weighted 2D basis functions
— construct them as separable products of |D fns.
— choice of different splines
* spline type
* order
* closed/open (B-spline)
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Separable product construction
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Bilinear patch

* Simplest case: 4 points, cross product of two linear
segments
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[Foley et al.]

Bicubic Bézier patch

* Cross product of two cubic Bezier segments
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Bicubic Bézier patch

* Cross product of two cubic Bézier segments
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* interpolation at corners, edges
* tangency at corners, edges
* convex hull
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Biquadratic Bézier patch

* Cross product of quadratic Bezier curves
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3x5 Bézier patch

* Cross product of quadratic and quartic Beziers
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Cylindrical B-spline surfaces

* Cross product of closed and open cubic B-splines
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Approximating spline surfaces

* Like curves, approximate with simple primitives

— in surface case, triangles or quads
— quads widely used because they fit in parameter space
 generally eventually rendered as pairs of triangles

* adaptive subdivision
— basic approach: recursively test flatness

* if the patch is not flat enough, subdivide into four using curve
subdivision twice, and recursively process each piece

— as with curves, convex hull property is useful for termination
testing (and is inherited from the curves)
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Approximating spline surfaces

* With adaptive subdivision, must take care with cracks
— (at the boundaries between degrees of subdivision)
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Geri’s Game

* Pixar short film to test
subdivision in production

— Catmull-Clark (quad mesh)
surfaces

— complex geometry
— extensive use of creases

— subdivision surfaces to support
cloth dynamics
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Specific surface representations

e Subdivision surfaces

— based on polygon meshes
(quads or triangles)

— rules for subdividing
surface by adding new
vertices

— converges to continuous
limit surface
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Subdivision curves

* Key idea: let go of the polynomials as the definition of
the curve, and let the refinement rule define the curve

Curve is defined as the limit of a refinement process
— properties of curve depend on the rules

— some rules make polynomial curves, some don’t

— complexity shifts from implementations to proofs

UL
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Subdivision surfaces
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Figure 2.2: Example of subdivision for a surface, showing 3 successive levels of refinement. On the
left an initial triangular mesh approximating the surface. Each triangle is split into 4 according to a

particular subdivision rule (middle). On the right the mesh is subdivided in this fashion once again.
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