#### Surfaces and Solids

CS 4620 Lecture 30

Cornell CS4620 Fall 2015 • Lecture 30

© 2015 Kavita Bala • 1

## Administration

- A4 and PPA2 demos

   Today
- A5 due on Friday
- Dreamworks visiting Thu/Fri
- Rest of class
  - Surfaces, Animation, Rendering

# Modeling in 3D

- Representing subsets of 3D space
  - volumes (3D subsets)
  - surfaces (2D subsets)
  - curves (ID subsets)
  - points (0D subsets)

# **Representing geometry**

- In order of dimension...
- Points: trivial case
- Curves
  - normally use parametric representation
  - line—just a point and a vector (like ray in ray tracer)
    - polylines (approximation scheme for drawing)
  - more general curves: usually use splines
  - $\mathbf{p}(t)$  is from R to  $\mathbb{R}^3$
  - p is defined by piecewise polynomial functions

# **Representing geometry**

- Surfaces
  - implicit and parametric representations both useful
  - example: plane
    - implicit: vector from point perpendicular to normal
    - parametric: point plus scaled tangents
  - example: sphere
    - implicit: distance from center equals r
    - parametric: write out in spherical coordinates
       messiness of parametric form not unusual

# Specific surface representations

- Parametric spline surfaces
  - extrusions
  - surfaces of revolution
  - generalized cylinders
  - spline patches

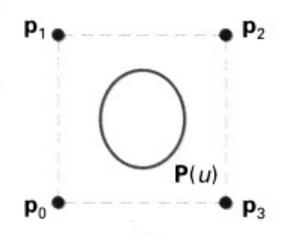
#### From curves to surfaces

- So far have discussed spline curves in 2D
  - it turns out that this already provides mathematical machinery for several ways of building curved surfaces
- Building surfaces from 2D curves

   extrusions and surfaces of revolution
- Building surfaces from 2D and 3D curves
  - generalized swept surfaces
- Building surfaces from spline patches
  - generalizing spline curves to spline patches

#### **Extrusions**

- Given a spline curve  $C \in \mathbb{R}^2$ , define  $S \in \mathbb{R}^3$  by  $S = C \times [a, b]$
- This produces a "tube" with the given cross section
   Circle: cylinder; "L": shelf bracket; "I": I beam
- It is parameterized by the spline t and the interval [a, b]  $s(t,s) = [c_x(t),c_y(t),s]^T$



P(u, v)

© 2015 Kavita Bala w/ prior instructor Steve Marschner • 8

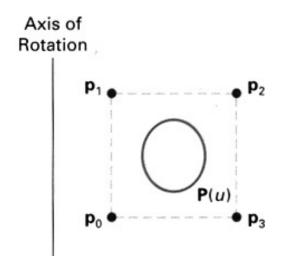
Cornell CS4620 Fall 2015 • Lecture 30

## Surfaces of revolution

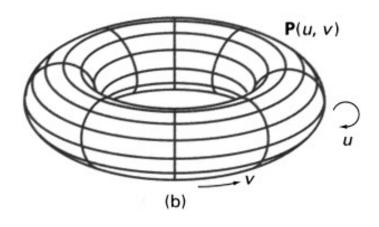
- Take a 2D curve and spin it around an axis
- Given curve c(t) in the plane, the surface is defined easily in cylindrical coordinates:

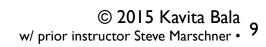
$$\mathbf{s}(t,s) = (r,\phi,z) = (c_x(t),s,c_y(t))$$

 the torus is an example in which the curve c is a circle



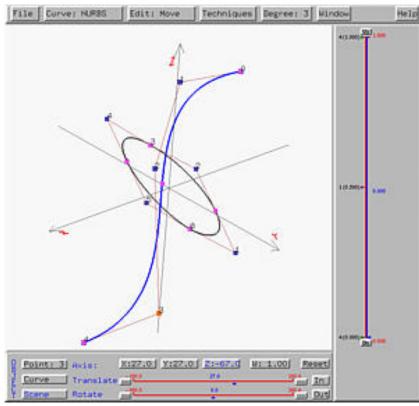
(a)



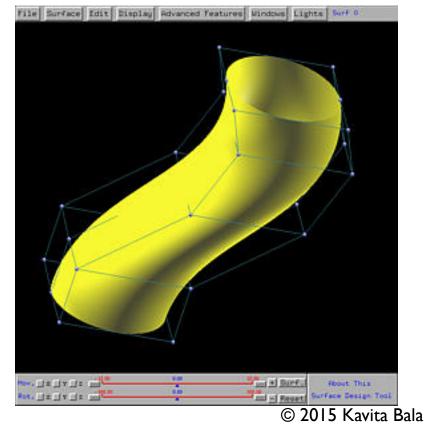


### Swept surfaces

- Surface defined by a cross section moving along a spine
- Simple version: a single 3D curve for spine and a single 2D curve for the cross section



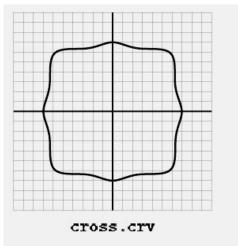
Cornell CS4620 Fall 2015 • Lecture 30

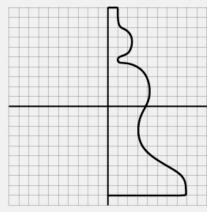


w/ prior instructor Steve Marschner • 10

## **Generalized cylinders**

- General swept surfaces
  - varying radius
  - varying cross-section
  - curved axis





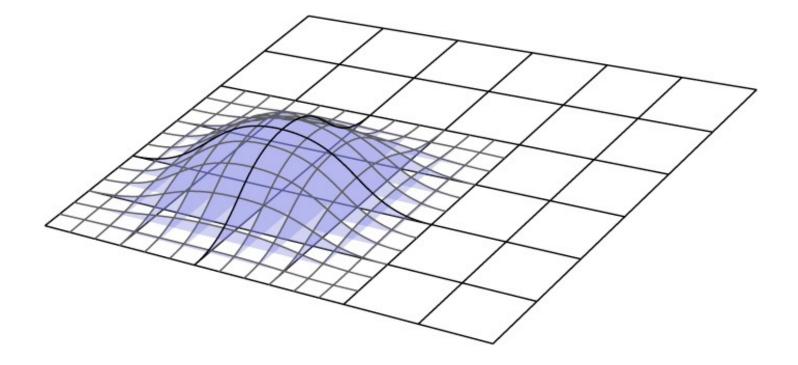
profile.crv



### From curves to surface patches

- Curve was sum of weighted ID basis functions
- Surface is sum of weighted 2D basis functions
  - construct them as separable products of ID fns.
  - choice of different splines
    - spline type
    - order
    - closed/open (B-spline)

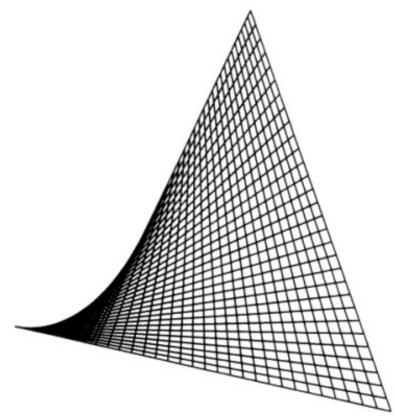
### Separable product construction



Cornell CS4620 Fall 2015 • Lecture 30

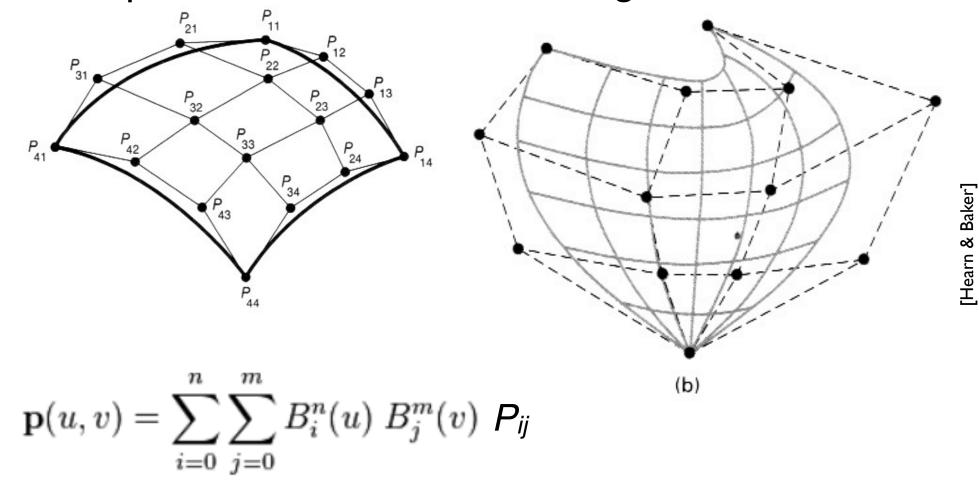
## **Bilinear patch**

• Simplest case: 4 points, cross product of two linear segments



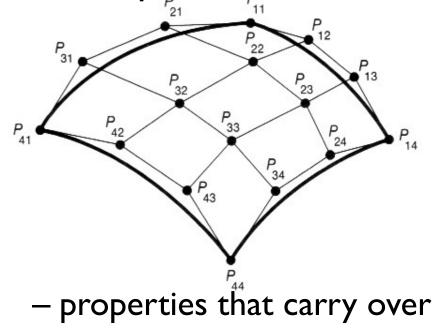
#### **Bicubic Bézier patch**

• Cross product of two cubic Bézier segments

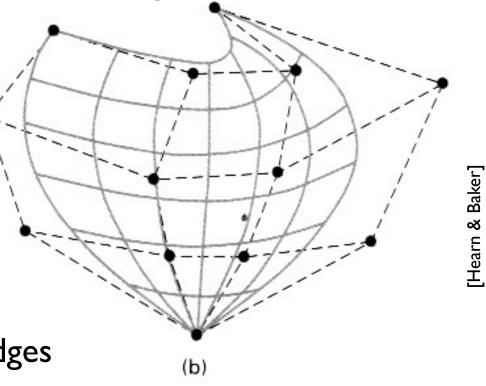


#### **Bicubic Bézier patch**

• Cross product of two cubic Bézier segments

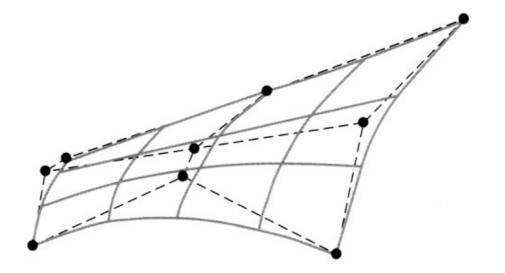


- interpolation at corners, edges
- tangency at corners, edges
- convex hull



## **Biquadratic Bézier patch**

• Cross product of quadratic Bézier curves



Cornell CS4620 Fall 2015 • Lecture 30

## 3x5 Bézier patch

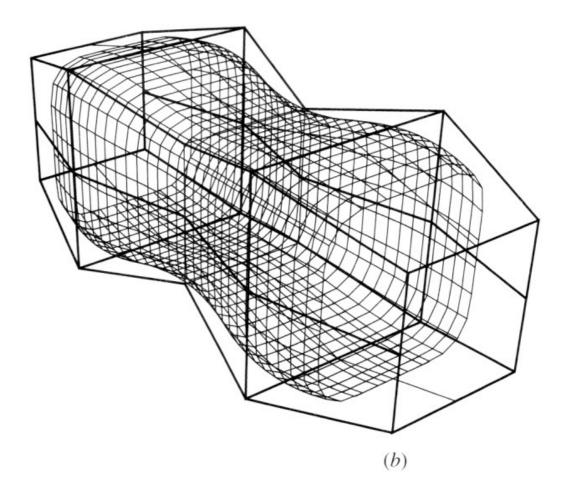
• Cross product of quadratic and quartic Béziers



Cornell CS4620 Fall 2015 • Lecture 30

# **Cylindrical B-spline surfaces**

• Cross product of closed and open cubic B-splines

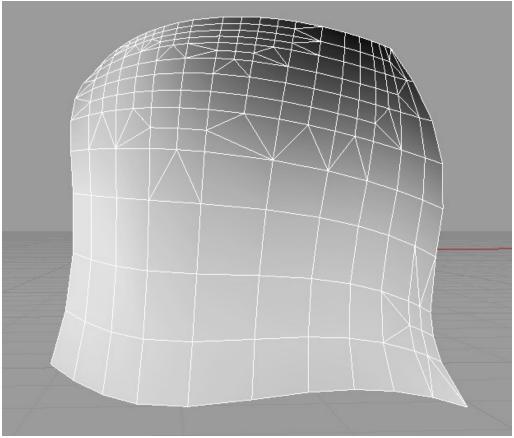


## Approximating spline surfaces

- Like curves, approximate with simple primitives
  - in surface case, triangles or quads
  - quads widely used because they fit in parameter space
  - generally eventually rendered as pairs of triangles
- adaptive subdivision
  - basic approach: recursively test flatness
  - if the patch is not flat enough, subdivide into four using curve subdivision twice, and recursively process each piece
  - as with curves, convex hull property is useful for termination testing (and is inherited from the curves)

# Approximating spline surfaces

- With adaptive subdivision, must take care with cracks
  - (at the boundaries between degrees of subdivision)



Cornell CS4620 Fall 2015 • Lecture 30

© 2015 Kavita Bala w/ prior instructor Steve Marschner • 21

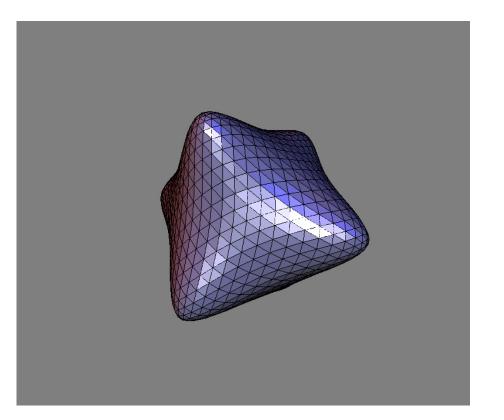
# Geri's Game

- Pixar short film to test subdivision in production
  - Catmull-Clark (quad mesh) surfaces
  - complex geometry
  - extensive use of creases
  - subdivision surfaces to support cloth dynamics



# Specific surface representations

- Subdivision surfaces
  - based on polygon meshes (quads or triangles)
  - rules for subdividing surface by adding new vertices
  - converges to continuous limit surface



## **Subdivision curves**

- Key idea: let go of the polynomials as the definition of the curve, and let the refinement rule define the curve
- Curve is defined as the limit of a refinement process
  - properties of curve depend on the rules
  - some rules make polynomial curves, some don't
  - complexity shifts from implementations to proofs



#### Subdivision surfaces

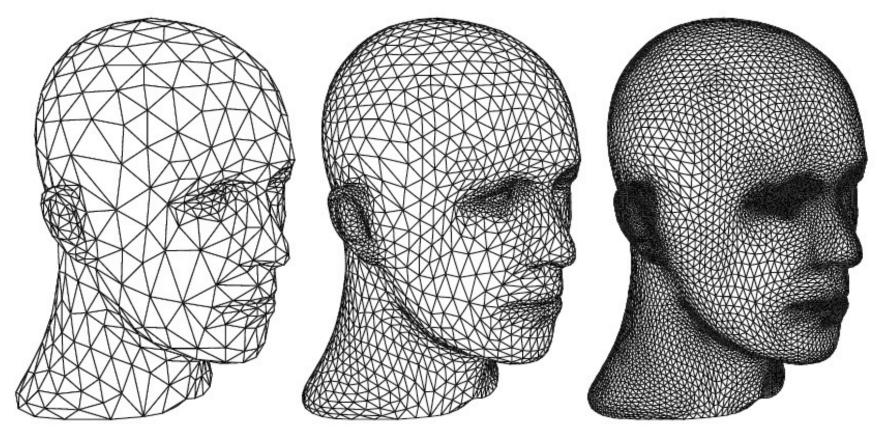


Figure 2.2: Example of subdivision for a surface, showing 3 successive levels of refinement. On the left an initial triangular mesh approximating the surface. Each triangle is split into 4 according to a particular subdivision rule (middle). On the right the mesh is subdivided in this fashion once again.