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Splines
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Administration

• A4 and PPA2 demos
– Together on Monday
– Please sign up

• 4621 lecture today
– Particle Systems
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Affine invariance

• Transforming the control points is the same as 
transforming the curve
– true for all commonly used splines
– extremely convenient in practice…

• Basis functions associated with points should always sum 
to 1
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Affine invariance

• Basis functions associated with points should always 
sum to 1
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Transform

Transformed curve
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Bézier matrix

– note that these are the Bernstein polynomials
 

 

and that defines Bézier curves for any degree
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Cubic B-spline matrix
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Affine invariance

• Basis functions associated with points should always 
sum to 1
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Hermite splines

• Matrix form is much simpler

– coefficients = rows
– basis functions = columns
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Hermite to Catmull-Rom

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero
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Hermite to Catmull-Rom

• Tangents are (pk + 1 – pk – 1) / 2

– scaling based on same argument about collinear case
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Hermite splines

• Matrix form is much simpler

– coefficients = rows
– basis functions = columns
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Hermite to Catmull-Rom

• Tangents are (pk + 1 – pk – 1) / 2

– scaling based on same argument about collinear case
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• Tangents are (pk + 1 – pk – 1) / 2

– scaling based on same argument about collinear case

Hermite to Catmull-Rom
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Catmull-Rom basis
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Catmull-Rom splines

• Our first example of an interpolating spline
• Like Bézier, equivalent to Hermite

• First example of a spline based on just a control point 
sequence

• Does not have convex hull property
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Converting spline representations

• All the splines we have seen are equivalent
– all represented by geometry matrices

• where S represents the type of spline
– therefore the control points may be transformed from one 

type to another using matrix multiplication
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B-splines

• We may want more continuity than C1

• We may not need an interpolating spline
• B-splines are a clean, flexible way of making long splines 

with arbitrary order of continuity
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Cubic B-spline basis
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Deriving the B-Spline

• Approached from a different tack than Hermite-style 
constraints
– Want a cubic spline; therefore 4 active control points
– Want C2 continuity
– Turns out that is enough to determine everything
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Efficient construction of any B-spline

• B-splines defined for all orders
– order d: degree d – 1
– order d: d points contribute to value

• One definition: Cox-deBoor recurrence
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B-spline construction, alternate view

• Recurrence
– ramp up/down

• Convolution
– smoothing of basis fn
– smoothing of curve
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Cubic B-spline matrix
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Bézier matrix

– note that these are the Bernstein polynomials
 

 

and that defines Bézier curves for any degree
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Cubic B-spline basis
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B-spline

• All points are same, no special points
• Basis functions are the same over many segments
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Other types of B-splines

• Nonuniform B-splines
– discontinuities not evenly spaced
– allows control over continuity or interpolation at certain 

points
– e.g. interpolate endpoints (commonly used case)

• Nonuniform Rational B-splines (NURBS)
– ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)
– key properties:

• invariance under perspective as well as affine
• ability to represent conic sections exactly

26


