Splines

Administration

- A4 and PPA2 demos
- Together on Monday
- Please sign up
- 462 I lecture today
- Particle Systems

Affine invariance

- Transforming the control points is the same as transforming the curve
- true for all commonly used splines
- extremely convenient in practice...
- Basis functions associated with points should always sum to 1

Affine invariance

- Basis functions associated with points should always sum to I

$$
\mathbf{p}(t)=b_{0} \mathbf{p}_{0}+b_{1} \mathbf{p}_{1}+b_{2} \mathbf{v}_{0}+b_{3} \mathbf{v}_{1}
$$

Transformed curve $=\mathbf{p}(t)+\mathbf{u}$

Bézier matrix

$$
\mathbf{f}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]
$$

- note that these are the Bernstein polynomials

$$
b_{n, k}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}
$$

and that defines Bézier curves for any degree

Cubic B-spline matrix

$$
\mathbf{f}_{i}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right] \cdot \frac{1}{6}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i-1} \\
\mathbf{p}_{i} \\
\mathbf{p}_{i+1} \\
\mathbf{p}_{i+2}
\end{array}\right]
$$

Affine invariance

- Basis functions associated with points should always sum to I

$$
\begin{aligned}
\mathbf{p}(t) & =b_{0} \mathbf{p}_{0}+b_{1} \mathbf{p}_{1}+b_{2} \mathbf{v}_{0}+b_{3} \mathbf{v}_{1} \\
\mathbf{p}^{\prime}(t) & =b_{0}\left(\mathbf{p}_{0}+\mathbf{u}\right)+b_{1}\left(\mathbf{p}_{1}+\mathbf{u}\right)+b_{2} \mathbf{v}_{0}+b_{3} \mathbf{v}_{1} \\
& =b_{0} \mathbf{p}_{0}+b_{1} \mathbf{p}_{1}+b_{2} \mathbf{v}_{0}+b_{3} \mathbf{v}_{1}+\left(b_{0}+b_{1}\right) \mathbf{u} \\
& =\mathbf{p}(t)+\mathbf{u}
\end{aligned}
$$

Hermite splines

- Matrix form is much simpler

$$
\mathbf{f}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{t}_{0} \\
\mathbf{t}_{1}
\end{array}\right]
$$

- coefficients $=$ rows
- basis functions = columns

Hermite to Catmull-Rom

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
- use adjacent control points

- end tangents: extra points or zero

Hermite to Catmull-Rom

- Tangents are $\left(\mathbf{p}_{k+1}-\mathbf{p}_{k-1}\right) / 2$
- scaling based on same argument about collinear case

$$
\begin{aligned}
& \mathbf{p}_{0}=\mathbf{q}_{k} \\
& \mathbf{p}_{1}=\mathbf{q}_{k+1} \\
& \mathbf{v}_{0}=0.5\left(\mathbf{q}_{k+1}-\mathbf{q}_{k-1}\right) \\
& \mathbf{v}_{1}=0.5\left(\mathbf{q}_{k+2}-\mathbf{q}_{k}\right)
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-.5 & 0 & .5 & 0 \\
0 & -.5 & 0 & .5
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{k-1} \\
\mathbf{q}_{k} \\
\mathbf{q}_{k+1} \\
\mathbf{q}_{k+2}
\end{array}\right]
$$

Hermite splines

- Matrix form is much simpler

$$
\mathbf{f}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{t}_{0} \\
\mathbf{t}_{1}
\end{array}\right]
$$

- coefficients = rows
- basis functions = columns

Hermite to Catmull-Rom

- Tangents are $\left(\mathbf{p}_{k+1}-\mathbf{p}_{k-1}\right) / 2$
- scaling based on same argument about collinear case

$$
\mathbf{p}_{0}=\mathbf{q}_{k}
$$

$$
\mathbf{p}_{1}=\mathbf{q}_{k+1}
$$

$$
\mathbf{v}_{0}=0.5\left(\mathbf{q}_{k+1}-\mathbf{q}_{k-1}\right)
$$

$$
\mathbf{v}_{1}=0.5\left(\mathbf{q}_{k+2}-\mathbf{q}_{k}\right)
$$

$$
\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-.5 & 0 & .5 & 0 \\
0 & -.5 & 0 & .5
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{k-1} \\
\mathbf{q}_{k} \\
\mathbf{q}_{k+1} \\
\mathbf{q}_{k+2}
\end{array}\right]
$$

Hermite to Catmull-Rom

- Tangents are $\left(\mathbf{p}_{k+1}-\mathbf{p}_{k-1}\right) / 2$
- scaling based on same argument about collinear case

$$
\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{cccc}
-.5 & 1.5 & -1.5 & .5 \\
1 & -2.5 & 2 & -.5 \\
-.5 & 0 & .5 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{k-1} \\
\mathbf{q}_{k} \\
\mathbf{q}_{k+1} \\
\mathbf{q}_{k+2}
\end{array}\right]
$$

Catmull-Rom basis

Catmull-Rom splines

- Our first example of an interpolating spline
- Like Bézier, equivalent to Hermite
- First example of a spline based on just a control point sequence
- Does not have convex hull property

Converting spline representations

- All the splines we have seen are equivalent
- all represented by geometry matrices

$$
\mathbf{p}_{S}(t)=T(t) M_{S} P_{S}
$$

- where S represents the type of spline
- therefore the control points may be transformed from one type to another using matrix multiplication

$$
\begin{gathered}
P_{1}=M_{1}^{-1} M_{2} P_{2} \\
\mathbf{p}_{1}(t)=T(t) M_{1}\left(M_{1}^{-1} M_{2} P_{2}\right) \\
=T(t) M_{2} P_{2}=\mathbf{p}_{2}(t)
\end{gathered}
$$

B-splines

- We may want more continuity than C^{\prime}
- We may not need an interpolating spline
- B-splines are a clean, flexible way of making long splines with arbitrary order of continuity

Cubic B-spline basis

Deriving the B-Spline

- Approached from a different tack than Hermite-style constraints
- Want a cubic spline; therefore 4 active control points
- Want C^{2} continuity
- Turns out that is enough to determine everything

Efficient construction of any B-spline

- B-splines defined for all orders
- order d: degree d-I
- order d:d points contribute to value
- One definition: Cox-deBoor recurrence

$$
\begin{aligned}
& b_{1}= \begin{cases}1 & 0 \leq u<1 \\
0 & \text { otherwise }\end{cases} \\
& b_{d}=\frac{t}{d-1} b_{d-1}(t)+\frac{d-t}{d-1} b_{d-1}(t-1)
\end{aligned}
$$

B-spline construction, alternate view

- Recurrence
- ramp up/down
- Convolution
- smoothing of basis fn
- smoothing of curve

Cubic B-spline matrix

$$
\mathbf{f}_{i}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right] \cdot \frac{1}{6}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i-1} \\
\mathbf{p}_{i} \\
\mathbf{p}_{i+1} \\
\mathbf{p}_{i+2}
\end{array}\right]
$$

Bézier matrix

$$
\mathbf{f}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]
$$

- note that these are the Bernstein polynomials

$$
b_{n, k}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}
$$

and that defines Bézier curves for any degree

Cubic B-spline basis

Cornell CS4620 Fall 2015• Lecture 29

B-spline

- All points are same, no special points
- Basis functions are the same over many segments

Uniform BSplines

Other types of B-splines

- Nonuniform B-splines
- discontinuities not evenly spaced
- allows control over continuity or interpolation at certain points
- e.g. interpolate endpoints (commonly used case)
- Nonuniform Rational B-splines (NURBS)
- ratios of nonuniform B-splines: $x(t) / w(t) ; y(t) / w(t)$
- key properties:
- invariance under perspective as well as affine
- ability to represent conic sections exactly

