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Administration

e A4 and PPA2 demos

— Together on Monday
— Please sign up
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de Casteljau’s algorithm

* A recurrence for computing points on Bezier spline
segments:

Po,i = Pi
Pn,i = QPn—1, T+ 5Pn—1,i+1

e Cool additional feature:
also subdivides
the segment into two
shorter ones
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Recursive algorithm

void DrawRecBezier (float eps) {
if Linear (curve, eps)
DrawlLine (curve);
else
SubdivideCurve (curve, leftC, rightC);
DrawRecBezier (leftC, eps);
DrawRecBezier (rightC, eps);
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Evaluating by subdivision

— Recursively split spline

* stop when polygon is
within epsilon of curve

— Termination criteria

* distance between control points
* distance of control points from line
* angles in control polygon

P, \ e0,1.2
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Cubic Bézier splines

* Very widely used type, especially in 2D
— e.g. it is a primitive in PostScript/PDF
* Nice de Casteljau recurrence for evaluation
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Chaining spline segments

* Can only do so much with a single polynomial

* Can use these functions as segments of a longer curve
—curve from t = 0 to t = | defined by first segment
—curve from t = | to t = 2 defined by second segment

£(t) = fi(t —4) fori<t<i+1

* TJo avoid discontinuity, match derivatives at junctions

— this produces a C! curve
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Continuity

* Smoothness can be described by degree of continuity
— zero-order (C°): position matches from both sides
— first-order (C'): tangent matches from both sides

— second-order (C?): curvature matches from both sides

— G"vs. C"

zero order first order second order
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Continuity

* Parametric continuity (C) of spline is continuity of
coordinate functions

« fI’(1) =1f2°(0)

* Geometric continuity (G) is continuity of the curve itself
* fI’(1) = k f2’(0) for some k
* Derivatives have same direction, but may have diff magnitude
— Generally G is less restrictive than C
— Can be G! but not C! when the tangent vector changes length

* Neither form of continuity is guaranteed by the other
— Can be C! but not G' when p(t) comes to a halt (next slide)
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Geometric vs. parametric continuity

2D spline
l o 5
T coordinate
! X
function x(t)
0
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Properties
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Control

* Local control
— changing control point only affects a limited part of spline

— without this, splines are very difficult to use
— many likely formulations lack this

* polynomial fits
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Trivial example: piecewise linear

 Basis function formulation: “function times point”

— basis functions: contribution of each point as t changes

0 1 Y ?
0 1 2 3

— can think of them as blending functions glued together
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Control

* Convex hull property
— convex hull = smallest convex region containing points
* think of a rubber band around some pins
— some splines stay inside convex hull of control points
* make clipping, culling, picking, etc. simpler

e B e
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Convex hull

* If basis functions are all positive, the spline has the
convex hull property

— we require them to sum to |

— if any basis function is ever negative, no convex hull prop.
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Affine invariance

* Transforming the control points is the same as
transforming the curve

— true for all commonly used splines
— extremely convenient in practice...
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Affine invariance

* Basis functions associated with points should always
sum to |

P(t) = bopo + bip1 + bavo + b3v1

p'(t) = bo(po + u) + b1(p1 +u) + bavo + b3 vy
= bopo + b1p1 + bavo + b3vi + (bo + b1)u
=p(t) +u
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Chaining spline segments

* Hermite curves are convenient because they can be
made long easily

* Bezier curves are convenient because their controls are
all points
— but it is fussy to maintain continuity constraints
— and they interpolate every 3rd point, which is a little odd

* We derived Bezier from Hermite by defining tangents
from control points

— a similar construction leads to the interpolating Catmull-Rom
spline
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Hermite to Catmull-Rom

* Have not yet seen any interpolating splines

* Would like to define tangents automatically
— use adjacent control points

— end tangents: extra points or zero
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Hermite to Catmull-Rom

e Tangents are (Pr+ | —Pr—1) /2
— scaling based on same argument about collinear case
Po = 4k
P1 =9+ 1
vo = 0.5(qk+1 — gr-1)
V1 = 0-5(01k+2 — QK)

0 1 0 0 Jqk—-1
0 0 1 0| au

—.D 0 D 0 qk-+1
0 -5 0 5] |Qrie
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Hermite splines

* Matrix form is much simpler

£(t) =

it t* ot 1

— coefficients = rows

2 =2 1
-3 3 =2
0 0 1
1 0 0

— basis functions = columns
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Hermite to Catmull-Rom

e Tangents are (Pr+ | —Pr—1) /2

— scaling based on same argument about collinear case

a 2 =2
b| [-3 3
c|l |0 O
d | 1 0
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V1 = 0-5(01k+2 — QK)
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Catmull-Rom basis

) ——— ——— e e
k-1 k k+ 1 k+?2
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Catmull-Rom splines

* Our first example of an interpolating spline

* Like Bézier, equivalent to Hermite

* First example of a spline based on just a control point
sequence

* Does not have convex hull property
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B-splines

* We may want more continuity than C'
* We may not need an interpolating spline

* B-splines are a clean, flexible way of making long splines
with arbitrary order of continuity
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Cubic B-spline basis

P, .3
*P_, / \ *Ps
l)(__) ® p_%
|
0
k-1 k k+ 1 k+2
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Deriving the B-Spline

* Approached from a different tack than Hermite-style
constraints

— Want a cubic spline; therefore 4 active control points

— Want C? continuity
— Turns out that is enough to determine everything
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Efficient construction of any B-spline

* B-splines defined for all orders

— order d: degree d — |
— order d: d points contribute to value

e One definition: Cox-deBoor recurrence

1 0<u<1
b1 = « ,
\O otherwise
{ d—1
by = d_lbd_l(t) | d_lbd_l(t—l)
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B-spline construction, alternate view

 Recurrence by (t)
— ramp up/down o

e Convolution ba(2)
— smoothing of basis fn 0

— smoothing of curve b /\
0 t t +
b4(t) /\
0 T t t t
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Cubic B-spline matrix

—1 3 —3 1 Pi—1

113 -6 3 0 Pi

__ [43 2 = 1
f;(t)=[t° ¢ ¢ 1] il 0 3 0| |p
14 1 0] |Pit2]
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Bézier matrix

—1 3 —3 1 Po
3 —6 3 0| |p

— [+3 2
fio)=1[ ¢ ¢ 1] | 5 o o | b
_1 0 0 0_ P3|

— note that these are the Bernstein polynomials

bn k(1) = (Z) th(1—¢)nk

and that defines Bezier curves for any degree
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Cubic B-spline basis

P, .3
*P_, / \ *Ps
l)(__) ® p_%
|
0
k-1 k k+ 1 k+2
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Over many segments

Uniform BSplines

e
0.801 ............ ............ SRR ............. ............. .............
0.607 /" NN
0.40"
0.20"
0.00
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B-spline

* All points are same, no special points

 Basis functions are the same
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Converting spline representations

* All the splines we have seen so far are equivalent
— all represented by geometry matrices

pg(t) — T(t)Msps

* where S represents the type of spline

— therefore the control points may be transformed from one
type to another using matrix multiplication

Py = M ' MyP;

p1(t) = T(t)M1(My M2 Py)
=T () MaPy = pa(t)
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Other types of B-splines

* Nonuniform B-splines
— discontinuities not evenly spaced

— allows control over continuity or interpolation at certain
points

— e.g. interpolate endpoints (commonly used case)

* Nonuniform Rational B-splines (NURBYS)
— ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)
— key properties:
* invariance under perspective as well as affine

* ability to represent conic sections exactly
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