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Administration

• A4 and PPA2 demos
– Together on Monday
– Please sign up
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de Casteljau’s algorithm

• A recurrence for computing points on Bézier spline 
segments:

• Cool additional feature:  
also subdivides  
the segment into two 
shorter ones
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Recursive algorithm

void DrawRecBezier (float eps) {
  if Linear (curve, eps) 
    DrawLine (curve);
  else 
    SubdivideCurve (curve, leftC, rightC);
    DrawRecBezier (leftC, eps);
    DrawRecBezier (rightC, eps);
}
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Evaluating by subdivision

– Recursively split spline 
• stop when polygon is  

within epsilon of curve
– Termination criteria

• distance between control points
• distance of control points from line
• angles in control polygon
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Cubic Bézier splines

• Very widely used type, especially in 2D
– e.g. it is a primitive in PostScript/PDF

• Nice de Casteljau recurrence for evaluation
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Chaining spline segments

• Can only do so much with a single polynomial
• Can use these functions as segments of a longer curve

– curve from t = 0 to t = 1 defined by first segment
– curve from t = 1 to t = 2 defined by second segment

• To avoid discontinuity, match derivatives at junctions
– this produces a C1 curve
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Continuity

• Smoothness can be described by degree of continuity
– zero-order (C0): position matches from both sides

– first-order (C1): tangent matches from both sides

– second-order (C2): curvature matches from both sides

– Gn vs. Cn

zero order first order second order
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Continuity

• Parametric continuity (C) of spline is continuity of 
coordinate functions
• f1’(1) = f2’(0)

• Geometric continuity (G) is continuity of the curve itself
• f1’(1) = k f2’(0) for some k
• Derivatives have same direction, but may have diff magnitude
– Generally G is less restrictive than C

– Can be G1 but not C1 when the tangent vector changes length

• Neither form of continuity is guaranteed by the other
– Can be C1 but not G1 when p(t) comes to a halt (next slide)
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Geometric vs. parametric continuity

10



Cornell CS4620 Fall 2015 • Lecture 28
© 2015 Kavita Bala

w/ prior instructor Steve Marschner • 

Properties
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Control

• Local control
– changing control point only affects a limited part of spline
– without this, splines are very difficult to use
– many likely formulations lack this

• polynomial fits
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Trivial example: piecewise linear

• Basis function formulation: “function times point”
– basis functions: contribution of each point as t changes

– can think of them as blending functions glued together
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Control

• Convex  hull property
– convex hull = smallest convex region containing points

• think of a rubber band around some pins
– some splines stay inside convex hull of control points

• make clipping, culling, picking, etc. simpler

YES YES YES NO
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Convex hull

• If basis functions are all positive, the spline has the 
convex hull property
– we require them to sum to 1

– if any basis function is ever negative, no convex hull prop.
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Affine invariance

• Transforming the control points is the same as 
transforming the curve
– true for all commonly used splines
– extremely convenient in practice…
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Affine invariance

• Basis functions associated with points should always 
sum to 1
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Chaining spline segments

• Hermite curves are convenient because they can be 
made long easily

• Bézier curves are convenient because their controls are 
all points
– but it is fussy to maintain continuity constraints
– and they interpolate every 3rd point, which is a little odd

• We derived Bézier from Hermite by defining tangents 
from control points
– a similar construction leads to the interpolating Catmull-Rom 

spline
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Hermite to Catmull-Rom

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

19



Cornell CS4620 Fall 2015 • Lecture 28
© 2015 Kavita Bala

w/ prior instructor Steve Marschner • 

Hermite to Catmull-Rom

• Tangents are (pk + 1 – pk – 1) / 2

– scaling based on same argument about collinear case
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Hermite splines

• Matrix form is much simpler

– coefficients = rows
– basis functions = columns
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Hermite to Catmull-Rom

• Tangents are (pk + 1 – pk – 1) / 2

– scaling based on same argument about collinear case
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Catmull-Rom basis
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Catmull-Rom splines

• Our first example of an interpolating spline
• Like Bézier, equivalent to Hermite

• First example of a spline based on just a control point 
sequence

• Does not have convex hull property
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B-splines

• We may want more continuity than C1

• We may not need an interpolating spline
• B-splines are a clean, flexible way of making long splines 

with arbitrary order of continuity
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Cubic B-spline basis
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Deriving the B-Spline

• Approached from a different tack than Hermite-style 
constraints
– Want a cubic spline; therefore 4 active control points
– Want C2 continuity
– Turns out that is enough to determine everything
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Efficient construction of any B-spline

• B-splines defined for all orders
– order d: degree d – 1
– order d: d points contribute to value

• One definition: Cox-deBoor recurrence
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B-spline construction, alternate view

• Recurrence
– ramp up/down

• Convolution
– smoothing of basis fn
– smoothing of curve
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Cubic B-spline matrix
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Bézier matrix

– note that these are the Bernstein polynomials
 

 

and that defines Bézier curves for any degree
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Cubic B-spline basis
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Over many segments
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B-spline

• All points are same, no special points
• Basis functions are the same
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Converting spline representations

• All the splines we have seen so far are equivalent
– all represented by geometry matrices

• where S represents the type of spline
– therefore the control points may be transformed from one 

type to another using matrix multiplication
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Other types of B-splines

• Nonuniform B-splines
– discontinuities not evenly spaced
– allows control over continuity or interpolation at certain 

points
– e.g. interpolate endpoints (commonly used case)

• Nonuniform Rational B-splines (NURBS)
– ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)
– key properties:

• invariance under perspective as well as affine
• ability to represent conic sections exactly
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