2D Spline Curves

CS 4620 Lecture 27

Administration

- PPA2 due today
- A5 out today

Plan

|.Spline segments

- how to define a polynomial on [0, I]
- ...that has the properties you want
- ...and is easy to control

2. Spline curves

- how to chain together lots of segments
- ...so that the whole curve has the properties you want
- ...and is easy to control

3. Refinement and evaluation

- how to add detail to splines
- how to approximate them with line segments

Matrix form of spline

$$
\mathbf{f}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}
$$

$$
\mathbf{f}(t)=b_{0}(t) \mathbf{p}_{0}+b_{1}(t) \mathbf{p}_{1}+b_{2}(t) \mathbf{p}_{2}+b_{3}(t) \mathbf{p}_{3}
$$

How to find the matrix?

- Given constraints
- Points that you must go through or nearby: 2 or 4
- Derivatives you must match
- Acceleration

Hermite splines: $\mathbf{2}$ points, 2 derivatives

- Solve constraints to find coefficients

$$
\begin{aligned}
x(t) & =a t^{3}+b t^{2}+c t+d & & \\
x^{\prime}(t) & =3 a t^{2}+2 b t+c & & d=x_{0} \\
x(0) & =x_{0}=d & & c=x_{0}^{\prime} \\
x(1) & =x_{1}=a+b+c+d & & a=2 x_{0}-2 x_{1}+x_{0}^{\prime}+x_{1}^{\prime} \\
x^{\prime}(0) & =x_{0}^{\prime}=c & & b=-3 x_{0}+3 x_{1}-2 x_{0}^{\prime}-x_{1}^{\prime} \\
x^{\prime}(1) & =x_{1}^{\prime}=3 a+2 b+c & &
\end{aligned}
$$

Hermite splines

- Matrix form is much simpler

$$
\mathbf{f}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{t}_{0} \\
\mathbf{t}_{1}
\end{array}\right]
$$

- coefficients = rows
- basis functions = columns

Hermite splines

- Hermite blending functions

Hermite splines

- Hermite basis functions

Bézier matrix

$$
\mathbf{f}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]
$$

- note that these are the Bernstein polynomials

$$
b_{n, k}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}
$$

and that defines Bézier curves for any degree

Bézier basis

Another way to Bézier segments

- A really boring spline segment: $f(t)=p 0$
- it only has one control point
- the curve stays at that point for the whole time
- Only good for building a piecewise constant spline
- a.k.a. a set of points

$$
{ }^{\bullet} \mathbf{p}_{0}
$$

Another way to Bézier segments

- A piecewise linear spline segment
- two control points per segment
- blend them with weights α and $\beta=1-\alpha$
- Good for building a piecewise linear spline
- a.k.a. a polygon or polyline

Another way to Bézier segments

- A linear blend of two piecewise linear segments
- three control points now
- interpolate on both segments using α and β
- blend the results with the same weights
- makes a quadratic spline segment
- finally, a curve!

$$
\begin{aligned}
\mathbf{p}_{1,0} & =\alpha \mathbf{p}_{0}+\beta \mathbf{p}_{1} \\
\mathbf{p}_{1,1} & =\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2} \\
\mathbf{p}_{2,0} & =\alpha \mathbf{p}_{1,0}+\beta \mathbf{p}_{1,1} \\
& =\alpha \alpha \mathbf{p}_{0}+\alpha \beta \mathbf{p}_{1}+\beta \alpha \mathbf{p}_{1}+\beta \beta \mathbf{p}_{2} \\
& =\alpha^{2} \mathbf{p}_{0}+2 \alpha \beta \mathbf{p}_{1}+\beta^{2} \mathbf{p}_{2}
\end{aligned}
$$

Another way to Bézier segments

- Cubic segment: blend of two quadratic segments
- four control points now (overlapping sets of 3)
- interpolate on each quadratic using α and β
- blend the results with the same weights
- makes a cubic spline segment
- this is the familiar one for graphics-but you can keep going

$$
\begin{aligned}
\mathbf{p}_{3,0}= & \alpha \mathbf{p}_{2,0}+\beta \mathbf{p}_{2,1} \\
= & \alpha \alpha \alpha \mathbf{p}_{0}+\alpha \alpha \beta \mathbf{p}_{1}+\alpha \beta \alpha \mathbf{p}_{1}+\alpha \beta \beta \mathbf{p}_{2} \\
& \beta \alpha \alpha \mathbf{p}_{1}+\beta \alpha \beta \mathbf{p}_{2}+\beta \beta \alpha \mathbf{p}_{2}+\beta \beta \beta \mathbf{p}_{3} \\
= & \alpha^{3} \mathbf{p}_{0}+3 \alpha^{2} \beta \mathbf{p}_{1}+3 \alpha \beta^{2} \mathbf{p}_{2}+\beta^{3} \mathbf{p}_{3}
\end{aligned}
$$

de Casteljau's algorithm

- A recurrence for computing points on Bézier spline segments:

$$
\begin{aligned}
\mathbf{p}_{0, i} & =\mathbf{p}_{i} \\
\mathbf{p}_{n, i} & =\alpha \mathbf{p}_{n-1, i}+\beta \mathbf{p}_{n-1, i+1}
\end{aligned}
$$

- Cool additional feature: also subdivides
 the segment into two shorter ones

Evaluating splines for display

- Need to generate a list of line segments to draw
- generate efficiently
- use as few as possible
- guarantee approximation accuracy
- Approaches
- recursive subdivision (easy to do adaptively)
- uniform sampling (easy to do efficiently)

Rendering the curve

- Option I: uniformly sample in t
- Problem
- may oversample smooth regions: slow
- may undersample highly curved regions: faceted rendering

Evaluating by subdivision

- Recursively split spline
- stop when polygon is within epsilon of curve

De Casteljau algorithm

- Adaptive subdivision!

Recursive algorithm

void DrawRecBezier (float eps) \{
if Linear (curve, eps)
DrawLine (curve);
else
SubdivideCurve (curve, leftC, rightC);
DrawRecBezier (leftC, eps);
DrawRecBezier (rightC, eps);

Evaluating by subdivision

- Recursively split spline
- stop when polygon is within epsilon of curve
- Termination criteria

- distance between control points
- distance of control points from line
- angles in control polygon

Cubic Bézier splines

- Very widely used type, especially in 2D
- e.g. it is a primitive in PostScript/PDF
- Nice de Casteljau recurrence for evaluation

Spline Curves

Chaining spline segments

- Can only do so much with a single polynomial
- Can use these functions as segments of a longer curve
- curve from $t=0$ to $t=I$ defined by first segment
- curve from $t=I$ to $t=2$ defined by second segment

$$
\mathbf{f}(t)=\mathbf{f}_{i}(t-i) \quad \text { for } i \leq t \leq i+1
$$

- To avoid discontinuity, match derivatives at junctions - this produces a C^{\prime} curve

Trivial example: piecewise linear

- Basis function formulation:"function times point"
- basis functions: contribution of each point as t changes

- can think of them as blending functions glued together

Hermite splines

- Constraints are endpoints and endpoint tangents

$$
\mathbf{f}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 2 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{0}^{\prime} \\
\mathbf{p}_{1}^{\prime}
\end{array}\right]
$$

Hermite basis

Chaining Bézier splines

- No continuity built in
- Achieve C^{\prime} using collinear control points

Bézier basis

(c) 2015 Kavita Bala

Continuity

- Smoothness can be described by degree of continuity
- zero-order (C^{0}): position matches from both sides
- first-order $\left(C^{l}\right)$: tangent matches from both sides
- second-order $\left(C^{2}\right)$: curvature matches from both sides $-G^{n}$ vs. C^{n}

Continuity

- Parametric continuity (C) of spline is continuity of coordinate functions
- Geometric continuity (G) is continuity of the curve itself
- Neither form of continuity is guaranteed by the other
- Can be C^{l} but not G^{l} when $\mathbf{p}(t)$ comes to a halt (next slide)
- Can be G^{l} but not C^{1} when the tangent vector changes length abruptly

