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2D Spline Curves
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Administration

• PPA2 due today

• A5 out today
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Plan

1.Spline segments
– how to define a polynomial on [0,1]
– …that has the properties you want
– …and is easy to control

2.Spline curves
– how to chain together lots of segments
– …so that the whole curve has the properties you want
– …and is easy to control

3.Refinement and evaluation
– how to add detail to splines
– how to approximate them with line segments
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Matrix form of spline
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f(t) = b0(t)p0 + b1(t)p1 + b2(t)p2 + b3(t)p3

f(t) = at3 + bt2 + ct+ d
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How to find the matrix?

• Given constraints
– Points that you must go through or nearby: 2 or 4
– Derivatives you must match
– Acceleration
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Hermite splines: 2 points, 2 derivatives

• Solve constraints to find coefficients
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Hermite splines

• Matrix form is much simpler

– coefficients = rows
– basis functions = columns
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Hermite splines

• Hermite blending functions
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Hermite splines

• Hermite basis functions
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Bézier matrix

– note that these are the Bernstein polynomials
 

 

and that defines Bézier curves for any degree
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Bézier basis
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Another way to Bézier segments

• A really boring spline segment: f(t) = p0
– it only has one control point
– the curve stays at that point for the whole time

• Only good for building a piecewise constant spline
– a.k.a. a set of points
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Another way to Bézier segments

• A piecewise linear spline segment
– two control points per segment
– blend them with weights α and β = 1 – α

• Good for building a  
piecewise linear spline
– a.k.a. a polygon or polyline
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Another way to Bézier segments

• A linear blend of two piecewise linear segments
– three control points now
– interpolate on both segments using α and β
– blend the results with the same weights

• makes a quadratic spline segment
– finally, a curve!
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Another way to Bézier segments

• Cubic segment: blend of two quadratic segments
– four control points now (overlapping sets of 3)
– interpolate on each quadratic using α and β
– blend the results with the same weights

• makes a cubic spline segment
– this is the familiar one for graphics—but you can keep going
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de Casteljau’s algorithm

• A recurrence for computing points on Bézier spline 
segments:

• Cool additional feature:  
also subdivides  
the segment into two 
shorter ones

[F
vD

FH
]
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p0,i = pi

pn,i = ↵pn�1,i + �pn�1,i+1
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Evaluating splines for display

• Need to generate a list of line segments to draw
– generate efficiently
– use as few as possible
– guarantee approximation accuracy

• Approaches
– recursive subdivision (easy to do adaptively)
– uniform sampling (easy to do efficiently)
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P0

Splines 11

Rendering the curve

• Option 1: uniformly sample in t

• Problem
• may oversample smooth regions: slow
• may undersample highly curved regions: faceted rendering
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Evaluating by subdivision

– Recursively split spline 
• stop when polygon is  

within epsilon of curve

[F
vD

FH
]
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De Casteljau algorithm

• Adaptive subdivision!
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Recursive algorithm

void DrawRecBezier (float eps) {
  if Linear (curve, eps) 
    DrawLine (curve);
  else 
    SubdivideCurve (curve, leftC, rightC);
    DrawRecBezier (leftC, eps);
    DrawRecBezier (rightC, eps);
}
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Evaluating by subdivision

– Recursively split spline 
• stop when polygon is  

within epsilon of curve
– Termination criteria

• distance between control points
• distance of control points from line
• angles in control polygon

[F
vD

FH
]
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Cubic Bézier splines

• Very widely used type, especially in 2D
– e.g. it is a primitive in PostScript/PDF

• Nice de Casteljau recurrence for evaluation
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Chaining spline segments

• Can only do so much with a single polynomial
• Can use these functions as segments of a longer curve

– curve from t = 0 to t = 1 defined by first segment
– curve from t = 1 to t = 2 defined by second segment

• To avoid discontinuity, match derivatives at junctions
– this produces a C1 curve
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f(t) = fi(t� i) for i  t  i+ 1
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Trivial example: piecewise linear

• Basis function formulation: “function times point”
– basis functions: contribution of each point as t changes

– can think of them as blending functions glued together
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Hermite splines

• Constraints are endpoints 
 and endpoint tangents
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Hermite basis 

30

0

1

i i + 1i – 1 i + 2

pi+1

ti

pi

ti+1

0
0 1

1
p1

t0

p0

t1

ti

pi+1

pi

ti+1

pi–1

ti–1 ti+2 pi+2

ti

pi+1

pi

ti+1



Cornell CS4620 Fall 2015 • Lecture 27
© 2015 Kavita Bala

w/ prior instructor Steve Marschner • 

Chaining Bézier splines

• No continuity built in

• Achieve C1 using collinear control points
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Bézier basis
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Continuity

• Smoothness can be described by degree of continuity
– zero-order (C0): position matches from both sides

– first-order (C1): tangent matches from both sides

– second-order (C2): curvature matches from both sides

– Gn vs. Cn

zero order first order second order
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Continuity

• Parametric continuity (C) of spline is continuity of 
coordinate functions

• Geometric continuity (G) is continuity of the curve 
itself

• Neither form of continuity is guaranteed by the other
– Can be C1 but not G1 when p(t) comes to a halt (next slide)

– Can be G1 but not C1 when the tangent vector changes 
length abruptly
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