2D Spline Curves

CS 4620 Lecture 26

Administration

- A4 due yesterday
- Demos? Will get back to you
- PPA2 due on Monday
- CS 462 I has a project discussion today
- A5 out on Monday

Defining spline curves

- At the most general they are parametric curves

$$
S=\{\mathbf{f}(t) \mid t \in[0, N]\}
$$

- For splines, $f(t)$ is piecewise polynomial
- for this lecture, the discontinuities are at the integers

Defining spline curves

- At the most general they are parametric curves

$$
S=\{\mathbf{f}(t) \mid t \in[0, N]\}
$$

- For splines, $f(t)$ is piecewise polynomial
- for this lecture, the discontinuities are at the integers

Defining spline curves

- At the most general they are parametric curves

$$
S=\{\mathbf{f}(t) \mid t \in[0, N]\}
$$

- For splines, $f(t)$ is piecewise polynomial
- for this lecture, the discontinuities are at the integers

Defining spline curves

- At the most general they are parametric curves

$$
S=\{\mathbf{f}(t) \mid t \in[0, N]\}
$$

- For splines, $f(t)$ is piecewise polynomial
- for this lecture, the discontinuities are at the integers

Defining spline curves

- Generally $f(t)$ is a piecewise polynomial
- for this lecture, the discontinuities are at the integers
- e.g., a cubic spline has the following form over $[k, k+1]$:

$$
\begin{aligned}
& x(t)=a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{x} \\
& y(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y}
\end{aligned}
$$

- Coefficients are different for every interval

Coordinate functions

Coordinate functions

Coordinate functions

Coordinate functions

coordinate function $y(t)$

Coordinate functions

Control of spline curves

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
- interpolating: passes through points
- approximating: merely guided by points

Control of spline curves

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
- interpolating: passes through points
- approximating: merely guided by points

Control of spline curves

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
- interpolating: passes through points
- approximating: merely guided by points

Control of spline curves

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
- interpolating: passes through points
- approximating: merely guided by points

How splines depend on their controls

- Each coordinate is separate
- the function $x(t)$ is determined solely by the x coordinates of the control points
- this means ID, 2D, 3D, .. curves are all really the same

Plan

|.Spline segments

- how to define a polynomial on [0, I]
- ...that has the properties you want
- ...and is easy to control

2. Spline curves

- how to chain together lots of segments
- ...so that the whole curve has the properties you want
- ...and is easy to control

3. Refinement and evaluation

- how to add detail to splines
- how to approximate them with line segments

Spline Segments

Trivial example: piecewise linear

- This spline is just a polygon
- control points are the vertices
- But we can derive it anyway as an illustration
- Each interval will be a linear function
$-x(t)=a t+b$
- constraints are values at endpoints
$-b=x_{0} ; a=x_{1}-x_{0}$
- this is linear interpolation

Trivial example: piecewise linear

- Vector formulation

$$
\begin{aligned}
x(t) & =\left(x_{1}-x_{0}\right) t+x_{0} \\
y(t) & =\left(y_{1}-y_{0}\right) t+y_{0} \\
\mathbf{f}(t) & =\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) t+\mathbf{p}_{0}
\end{aligned}
$$

- Matrix formulation

$$
\mathbf{f}(t)=\left[\begin{array}{ll}
t & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1}
\end{array}\right]
$$

Trivial example: piecewise linear

- Basis function formulation
- regroup expression by \mathbf{p} rather than t

$$
\begin{aligned}
\mathbf{f}(t) & =\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) t+\mathbf{p}_{0} \\
& =(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}
\end{aligned}
$$

- interpretation in matrix viewpoint

$$
\mathbf{f}(t)=\left(\left[\begin{array}{ll}
t & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\right)\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1}
\end{array}\right]
$$

Trivial example: piecewise linear

- Vector blending formulation:"average of points"
- blending functions: contribution of each point as t changes

Hermite splines

- Less trivial example
- Form of curve: piecewise cubic
- Constraints: endpoints and tangents (derivatives)

Hermite splines

- Solve constraints to find coefficients

$$
\begin{aligned}
x(t) & =a t^{3}+b t^{2}+c t+d & & \\
x^{\prime}(t) & =3 a t^{2}+2 b t+c & & d=x_{0} \\
x(0) & =x_{0}=d & & c=x_{0}^{\prime} \\
x(1) & =x_{1}=a+b+c+d & & a=2 x_{0}-2 x_{1}+x_{0}^{\prime}+x_{1}^{\prime} \\
x^{\prime}(0) & =x_{0}^{\prime}=c & & b=-3 x_{0}+3 x_{1}-2 x_{0}^{\prime}-x_{1}^{\prime} \\
x^{\prime}(1) & =x_{1}^{\prime}=3 a+2 b+c & &
\end{aligned}
$$

Matrix form of spline

$$
\begin{gathered}
\mathbf{f}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} \\
{\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]} \\
\mathbf{f}(t)=b_{0}(t) \mathbf{p}_{0}+b_{1}(t) \mathbf{p}_{1}+b_{2}(t) \mathbf{p}_{2}+b_{3}(t) \mathbf{p}_{3}
\end{gathered}
$$

Matrix form of spline

$$
\begin{gathered}
\mathbf{f}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} \\
{\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]} \\
\mathbf{f}(t)=b_{0}(t) \mathbf{p}_{0}+b_{1}(t) \mathbf{p}_{1}+b_{2}(t) \mathbf{p}_{2}+b_{3}(t) \mathbf{p}_{3}
\end{gathered}
$$

Matrix form of spline

$$
\begin{gathered}
\mathbf{f}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} \\
{\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]} \\
\mathbf{f}(t)=b_{0}(t) \mathbf{p}_{0}+b_{1}(t) \mathbf{p}_{1}+b_{2}(t) \mathbf{p}_{2}+b_{3}(t) \mathbf{p}_{3}
\end{gathered}
$$

Hermite splines

- Matrix form is much simpler

$$
\mathbf{f}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{t}_{0} \\
\mathbf{t}_{1}
\end{array}\right]
$$

- coefficients = rows
- basis functions = columns

Hermite splines

- Hermite blending functions

Hermite splines

- Hermite basis functions

Hermite splines

- Hermite basis functions

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

- note derivative is defined as 3 times offset
- reason is illustrated by linear case

Hermite to Bézier

$$
\begin{aligned}
\mathbf{p}_{0} & =\mathbf{q}_{0} \\
\mathbf{p}_{1} & =\mathbf{q}_{3} \\
\mathbf{t}_{0} & =3\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
\mathbf{t}_{1} & =3\left(\mathbf{q}_{3}-\mathbf{q}_{2}\right)
\end{aligned}
$$

$$
\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{v}_{0} \\
\mathbf{v}_{1}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right]
$$

Hermite to Bézier

$$
\begin{aligned}
\mathbf{p}_{0} & =\mathbf{q}_{0} \\
\mathbf{p}_{1} & =\mathbf{q}_{3} \\
\mathbf{t}_{0} & =3\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
\mathbf{t}_{1} & =3\left(\mathbf{q}_{3}-\mathbf{q}_{2}\right)
\end{aligned}
$$

$\left[\begin{array}{l}\mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d}\end{array}\right]=\left[\begin{array}{cccc}2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3\end{array}\right]\left[\begin{array}{l}\mathbf{q}_{0} \\ \mathbf{q}_{1} \\ \mathbf{q}_{2} \\ \mathbf{q}_{3}\end{array}\right]$

Hermite to Bézier

$$
\begin{aligned}
\mathbf{p}_{0} & =\mathbf{q}_{0} \\
\mathbf{p}_{1} & =\mathbf{q}_{3} \\
\mathbf{t}_{0} & =3\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
\mathbf{t}_{1} & =3\left(\mathbf{q}_{3}-\mathbf{q}_{2}\right) \\
{\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right] } & =\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right]
\end{aligned}
$$

Bézier matrix

$$
\mathbf{f}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]
$$

- note that these are the Bernstein polynomials

$$
b_{n, k}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}
$$

and that defines Bézier curves for any degree

Bézier basis

