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Administration

* A4 due yesterday
— Demos? Will get back to you

PPA2 due on Monday

CS 4621 has a project discussion today

e A5 out on Monday
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Defining spline curves

* At the most general they are parametric curves

S =f(t)[t [0, N]}

* For splines, f(t) is piecewise polynomial
— for this lecture, the discontinuities are at the integers
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Defining spline curves

* Generally f(t) is a piecewise polynomial
— for this lecture, the discontinuities are at the integers
— e.g., a cubic spline has the following form over [k, k + |]:

T(t) = azt® + byt + cut + dy
y(t) = a,t® + byt® + c,t + d,

— Coefficients are different for every interval
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Coordinate functions

2D spline
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Coordinate functions

2D spline

coordinate function x(7)
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Coordinate functions

2D spline

0 43 1 2
21 coordinate function y(t)
| 4+
t coordinate function x(7)
0

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 26



Coordinate functions

2D spline

0 43 1 2
21 coordinate function y(t)
| 4+
t coordinate function x(7)
0

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 26



Coordinate functions

2D spline

0 43 1 2
21 coordinate function y(t)
| 4+
t coordinate function x(7)
0

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 26



Coordinate functions

2D spline

0 433 1 2
21 coordinate function y(t)
| 4+
t coordinate function x(7)
0

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 26



Coordinate functions

2D spline

0 43 1 2
21 coordinate function y(t)
| 4+
t coordinate function x(7)
0

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 26



Coordinate functions

2D spline

0 43 1 2
21 coordinate function y(t)
2 2
t coordinate function x(7)
0

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 26



Coordinate functions

2D spline
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Control of spline curves

* Specified by a sequence of controls (points or vectors)

* Shape is guided by control points (aka control polygon)
— interpolating: passes through points
— approximating: merely guided by points
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How splines depend on their controls

* Each coordinate is separate

—t
t
—t
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ne function x(t) is determined solely by the x coordinates of
he control points

his means 1D, 2D, 3D, ... curves are all really the same
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Plan

I .Spline segments
— how to define a polynomial on [0, 1]
— ...that has the properties you want
— ...and is easy to control

2.Spline curves
— how to chain together lots of segments
— ...so that the whole curve has the properties you want
— ...and is easy to control
3 .Refinement and evaluation
— how to add detail to splines
— how to approximate them with line segments
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Spline Segments
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Trivial example: piecewise linear

* This spline is just a polygon
— control points are the vertices
* But we can derive it anyway as an illustration

* Each interval will be a linear function
— x(t) =at+b

— constraints are values at endpoints
— b=xp;a=x;—xg

— this is linear interpolation
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Trivial example: piecewise linear

* Vector formulation
x(t) = (r1 — x0)t + x0
y(t) = (Y1 — yo)t + Yo
f(t) = (P1 — Po)t + Po

* Matrix formulation

—1 1
f=[t 1|, , g(l)
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Trivial example: piecewise linear

e Basis function formulation

— regroup expression by p rather than t

f(t) = (p1 — Po)t + Po
= (1 —%)po + tp1

— interpretation in matrix viewpoint
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Po
P1
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Trivial example: piecewise linear

* Vector blending formulation: “average of points”

— blending functions: contribution of each point as t changes
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Hermite splines

* Less trivial example
* Form of curve: piecewise cubic
* Constraints: endpoints and tangents (derivatives)
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Hermite splines

e Solve constraints to find coefficients

r(t) = at® + bt* + ct +d

2’ (t) = 3at* + 2bt + ¢ d = xg

r(0) =x9 =d c = x
r(l)=z1=a+b+c+d a = 2xg — 2x1 + 2 + 27
2'(0) =25 =c b= —3x9 + 3x1 — 2x[ — T}
(1) =x2, =3a+2b+c
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Matrix form of spline

f(t) =at’ + bt +ct+d

X X X X| [po
X X X X| |p2
_>< X X ><_ _p3_
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x x x x| [po
IR R N &
X X X x| |p2
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© 2015 Kavita Bala 7

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 26



Matrix form of spline

f(t) =at’ + bt +ct+d

X X X X| [po
X X X X| |p2
_>< X X ><_ _p3_

© 2015 Kavita Bala 7

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 26



Hermite splines

* Matrix form is much simpler

£(t) =

it t* ot 1

— coefficients = rows

2 =2 1
-3 3 =2
0 0 1
1 0 0

— basis functions = columns
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Hermite splines

* Hermite blending functions

- bo (t) bi(t) —
: \\_ ////
\\ /// 3
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£ \\,
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t
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Hermite splines

e Hermite basis functions
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Hermite to Bézier

* Mixture of points and vectors is awkward

* Specify tangents as differences of points
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Hermite to Bézier

* Mixture of points and vectors is awkward

* Specify tangents as differences of points

2 .
I’'m calling these

points q just for this
—t slide and the next
one.

\ J

— note derivative is defined as 3 times offset
* reason is illustrated by linear case
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Hermite to Bézier

Po = 9o
P1 = 4qs3
to = 3(q1 — qo)
t1 = 3(q3 — q2)

Po 1 0 0 0 d0
P1| 0 0 0 1 q1
vol |-3 3 0 Of [qgo
vi|] [0 0 -3 3| |as
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Hermite to Bézier

Po = 9o
P1 = 4qs3
to = 3(q1 — qo)
t1 = 3(a3 — q2)

a 2 =2 1
b| |-3 3 -2
c|l |0 0 1
d| |1 0 0
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Hermite to Bézier

Po = 9o
P1 = 4qs3
to = 3(q1 — qo)
t1 = 3(q3 — q2)

a —1 3 =3 1| |qo

b, |3 -6 3 0| a1

c|l |-3 3 0 O] (a2
_d_ i 1 0 0 O_ _(]3_
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Bézier matrix

—1 3 —3 1 Po
3 —6 3 0| |p

— [+3 2
fio)=1[ ¢ ¢ 1] | 5 o o | b
_1 0 0 0_ P3|

— note that these are the Bernstein polynomials

bn k(1) = (Z) th(1—¢)nk

and that defines Bezier curves for any degree
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Bézier basis . D.

P

P,
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