
© Kavita Bala, Computer Science, Cornell University

GPUs
CS 4620 Lecture 25

© Kavita Bala, Computer Science, Cornell University

Display

Rasterization

Projection & Clipping

Transform & Lighting

Application

The dark ages (early-mid 1990’s), when there were only frame buffers for
normal PC’s.

This is where pipelines start for PC commodity graphics, prior to Fall of
1999.

This part of the pipeline reaches the consumer level with the introduction of
the NVIDIA GeForce256.

Hardware today has moved traditional application processing into the
graphics accelerator.

Some accelerators were no more than a simple chip that sped up linear
interpolation along a single span, so increasing fill rate.

Brief History

© Kavita Bala, Computer Science, Cornell University

BattleForge

OpenGL 4.0

2006

Direct X 11

2009

Direct X 10

OpenGL 4.2

2012

Direct X 12

© Kavita Bala, Computer Science, Cornell University

Era of GPUs

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Concepts

© Kavita Bala, Computer Science, Cornell University

Multi-Pass Rendering

• Limits to what hardware can do in 1 pass
– In fact might depend on results of previous pass

• So multi-pass rendering
– Each pass does some part of shading
– Outputs a “fragment”: rgb, alpha, z
– Add or blend with previous pass

© Kavita Bala, Computer Science, Cornell University

Multi-pass rendering

Diefenbach 1997

© Kavita Bala, Computer Science, Cornell University

Dependent Texture Reads
• Introduced in 1999

• Number of passes proportional to the
longest “chain” of operations you need

• Dependent texture reads helps
– Can read a texture
– Transform it
– And then read another texture based on

transformed value!
– Much more efficient

© Kavita Bala, Computer Science, Cornell University

Dependent Texture Reads

© Kavita Bala, Computer Science, Cornell University

Reflections and Normal Maps
Environment Map Bump Mapping (EMBM)

© Kavita Bala, Computer Science, Cornell University

Rendering: forward shading

for each object in the scene
 for each triangle in this object
 for each fragment f in this triangle

 gl_FragColor = shade(f)
 if (depth of f < depthbuffer[x, y])
 framebuffer[x, y] = gl_FragColor
 depthbuffer[x, y] = depth of f
 end if

 end for
 end for
 end for

This is what we have done so far in 4620:

© Kavita Bala, Computer Science, Cornell University

Output: the shaded scene

© Kavita Bala, Computer Science, Cornell University

Drawbacks of Forward Shading
• If shade (f) is very expensive

– e.g., many lights, shadow maps, complex shaders
– overdraw by closer geometry wastes work on each

fragment

© Kavita Bala, Computer Science, Cornell University

Drawbacks of Forward Shading
• Many other complex effects: Image processing effects

– tonemapping, screen-space ambient occlusion, bloom,
toon shaders etc., are very expensive

© Kavita Bala, Computer Science, Cornell University

Overdraw: Real Example

(Battlefield 3)

© Kavita Bala, Computer Science, Cornell University

Deferred Shading Step 1

for each object in the scene
 for each triangle in this object
 for each fragment f in this triangle

 gl_FragColor = material properties of f
 if (depth of f < depthbuffer[x, y])

 gbuffer[x, y] = gl_FragColor
 depthbuffer[x, y] = depth of f
 end if

 end for
 end for
end for

Code structure is nearly the same as forward shading, with
one key difference:

© Kavita Bala, Computer Science, Cornell University

Output: just the materials

© Kavita Bala, Computer Science, Cornell University

Deferred Shading Step 2
for each fragment f in the gbuffer

 framebuffer[x, y] = shade (f)
end for

Key improvement: shade (f) only executed for visible fragments.

Output is the same →

© Kavita Bala, Computer Science, Cornell University

The ubershader

shade (f) {
 result = 0;
 if (f is Lambertian) {
 for each light
 result += (n . l) * diffuse;
 end for
 } else if (f is Blinn-Phong) {
 ...
 } else if (f is ...) {
 ...
 }
 return result;
}

• Shader which computes lighting based on g-buffer: has
code for all material/lighting models in a single huge
shader.

© Kavita Bala, Computer Science, Cornell University

Ubershader inputs
• Need access to all parameters of the material for the

current fragment:
– Blinn-Phong: kd, ks, n
– Cook-Torrance: kd, ks, alpha
– etc.

• Also need fragment position and surface normal
• Solution: write all that out from the material shaders:

{outputs} = {f.material, f.position, f.normal}
if (depth of f < depthbuffer[x, y])
 gbuffer[x, y] = {outputs}
 depthbuffer[x, y] = depth of f
end if

© Kavita Bala, Computer Science, Cornell University

G-buffer: multiple textures

material properties

position normal

© Kavita Bala, Computer Science, Cornell University

Power of Deferred Shading
• Can do any image processing between step 1 and step 2!

– Recall: step 1 = fill g-buffer, step 2 = light/shade
– Could add a step 1.5 to filter the g-buffer

• Examples:
– bloom
– screen-space ambient occlusion
– high-dynamic range rendering (adaptive exposure control

and tone-mapping)
– silhouette detection/toon rendering
– “mood effects” (tinted colors, blurry or warped vision)

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

BattleForge

OpenGL 4.0

2006

Direct X 11

2009

Direct X 10

OpenGL 4.2

2012

Direct X 12

© Kavita Bala, Computer Science, Cornell University

DirectX 6/OpenGL 1.2: Quake 3

© Kavita Bala, Computer Science, Cornell University

Why multi-pass?
• Scalable

Quake III Engine
1. Passes 1-4: accumulate bump map
2. Pass 5: Diffuse lighting
3. Pass 6: Base texture
4. Pass 7: Specular lighting
5. Pass 8: Emissive lighting
6. Pass 9: Volumetric lighting

© Kavita Bala, Computer Science, Cornell University

OpenGL 1.3/DirectX 7 (2001)
• Improved multi-texturing

– DOT3 (per-pixel lighting)
– Dependent texture reads

§ EMBM: Environment Map Bump Mapping

– Cube maps & projected textures (for shadows)

• Support for HW Transform & Lighting
– Directional, point, and spot lights
– Vertex tweening & skinning: better animation
– Texture coordinate transformation & generation

• Example Hardware
– GeForce 256, ATI Radeon, Intel Extreme Graphics 2

© Kavita Bala, Computer Science, Cornell University

OpenGL 1.4/DirectX 8,SM 1.x / (2002)

• Programmable vertex shaders
– Up to 128 floating-point instructions

• Programmable pixel shaders
– Up to 16 fixed-point vector instructions and 4 textures
– 3D texture support
– 1 level of dependent texturing
– Advanced Render-to-Texture support

• Example Hardware
– GeForce 3, ATI Radeon 8500, XGI Volari V3, Matrox

Parhelia

© Kavita Bala, Computer Science, Cornell University

SM 1.x-era Game: Halo
• Vertex shaders used to add Fresnel reflection to ice
• Pixel shaders used to add glow to sun
• Render-to-texture used to distort pistol scope
• Dependent texturing used to animate & light water

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Open GL 1.5/DirectX 9, SM 2.0(2003)
• Floating point pixel processing

– 16/32-bit floating point shaders, render targets &
textures

– Up to 64 vector instructions and 16 textures
• Arbitrary dependent texturing
• Longer vertex processing – 256 instructions
• Multiple Render Targets – up to 16 outputs per pixel
• Example Hardware

– GeForce FX 5900, ATI Radeon 9700, S3
DeltaChrome

© Kavita Bala, Computer Science, Cornell University

2003

© Kavita Bala, Computer Science, Cornell University

OpenGL 2.0 /DirectX 9.0c, SM 3.0(2004)

• Unified shader programming model
– Pixel & vertex shader flow control
– Infinite length vertex & pixel shaders
– Vertex shader texture lookups

• Floating-point filtering & blending
• Geometry instancing
• Example Hardware

– GeForce 6800, GeForce 7800 GTX

© Kavita Bala, Computer Science, Cornell University

Vertex Textures

© Kavita Bala, Computer Science, Cornell University

SM 3.0-era Game: Unreal Engine 3
• 16-bit blending for high dynamic range lighting
• 16-bit filtering accelerates glow and exposure FX
• Long shaders & flow control for virtual

displacement mapping, soft shadows,
iridescence, fog, etc.

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

G70 (Based on NV40): 2005

© Kavita Bala, Computer Science, Cornell University

Vertex Shaders (G stage)
• 8 parallel

© Kavita Bala, Computer Science, Cornell University

Fragment Shaders (FG)
• 24 parallel

© Kavita Bala, Computer Science, Cornell University

Raster Operators (FM)
• 16 ROPs

© Kavita Bala, Computer Science, Cornell University

2006 onwards
• Push for unified shader architecture?

– Why?

© Kavita Bala, Computer Science, Cornell University

Performance

Vertex Bound Pixel BoundCPU bound

© Kavita Bala, Computer Science, Cornell University

Bottleneck
• Reduce workload of each stage

• If performance does not change
– This is not problem

• Else..

© Kavita Bala, Computer Science, Cornell University

Vertex performance
• Reduce triangles
• Reduce vertex shaders

© Kavita Bala, Computer Science, Cornell University

Pixel shader performance
• Pixel shader

– Does resolution change performance?

• Reasons
– Memory bandwidth
– Shader performance
– Texture filtering

© Kavita Bala, Computer Science, Cornell University

Why Unified Shader Architecture?
• Load balancing

– Guesswork before
– Unified lets GPU do it right

© Kavita Bala, Computer Science, Cornell University

NV80 onwards
• Unified shader architecture

© Kavita Bala, Computer Science, Cornell University

Why Unified architectures?

© Kavita Bala, Computer Science, Cornell University

G80 (2006)
• Fundamental change in architecture

• Full Direct3D 10 Support
• DirectX10 Shader Model 4.0 Support

– Vertex Shader 4.0, Geometry Shader 4.0, Pixel
Shader 4.0

– Internal 128-bit Floating Point (FP32) Precision
• Unlimited shader lengths
• Up to 128 textures per pass

• Support for FP32 texture formats with filtering
• Non-Power of two texture support
• 8 Multiple Render Targets

© Kavita Bala, Computer Science, Cornell University

G80

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Architectural Trends
• More general purpose
• More shaders: vertex, pixel, geometry, tesselation

• Longer shaders
– Length of shaders: 16, 128, … unbounded

• More bits
– More texturing: more, bigger, and greater precision
– Better floating point
– Better HDR support

• More SIMD cores
– More parallelism

© Kavita Bala, Computer Science, Cornell University

Hardware
• 1999-2007: Frontier times

• 2015: Heterogeneous Parallel Computing
– New frontier
– CPUs (multicore)
– GPUs (SIMD or MIMD clusters)

• Programming these is going to be hard

