CIdOE
CS 4620 Lecture 25

© Kavita Bala, Computer Science, Cornell University

Brief History

The dark ages (early-mid 1990’s), when there were only frame buffers for
Display normal PC’s.

Some accelerators were no more than a simple chip that sped up linear

Rasterization interpolation along a single span, so increasing fill rate.
This is where pipelines start for PC commodity graphics, prior to Fall of
Projection & Clipping 1999.
This part of the pipeline reaches the consumer level with the introduction of
Transform & Lighting the NVIDIA GeForce256.
- Hardware today has moved traditional application processing into the
Application graphics accelerator.

© Kavita Bala, Computer Science, Cornell University

DirectX B DirectX 7 DirectX 8 DirectX 9 DirectX 8.0c Direct X 10 Direct X 11 Direct X 12
DirectX5 Mulitexturing T&L TextureStageState SM1x SM20 SM3.0
Riva 128 Riva TNT GeForca 256 GeForca 3 Cg GeaForceFX GeForce 6 OpenGL 4.0 OpenGL 4.2
e | TN R L a >
1968 1869 2000 2001 2002 2003 2004 2006 2009 2012

N = ol i iand
\ ! ‘ =g ’i et s ' 'l

1....=}\‘:\ - el

Quake 3 Giants Halo Far Cry UE3 BattleForge

© Kavita Bala, Computer Science, Cornell University

Era of GPUs

Nvidia's GeForce 256 was the first graphics chip to actually be
called a GPU, based on the addition of a hardware-based
transformation and lighting engine (T&L).

SR RY RN

This engine allowed the graphics chip to undertake the heavily floating-point intensive

calculations of transforming the 3D objects and scenes — and their associated lighting — into
the 2D representation of the rendered image. Previously, this computation was undertaken by
the CPU, which could easily bottleneck with the workload, and tended to limit available detail.

Nvidia Grass Demo (GeForce 256)

Dx8 Pixel Spézcular { I;og
. Shaders ? LRl

{

5 | 8 Texture |
Blend |
Ops |

© Kavita Bala, Computer Science, Cornell University

Concepts

© Kavita Bala, Computer Science, Cornell University

Multi-Pass Rendering

- Limits to what hardware can do in 1 pass
— In fact might depend on results of previous pass

* SO0 multi-pass rendering
— Each pass does some part of shading
— Qutputs a “fragment”: rgb, alpha, z
— Add or blend with previous pass

© Kavita Bala, Computer Science, Cornell University

Multi-pass rendering

Diefenbach 1997

© Kavita Bala, Computer Science, Cornell University

Dependent Texture Reads
* Introduced in 1999

* Number of passes proportional to the
longest “chain” of operations you need

» Dependent texture reads helps
— Can read a texture

— Transform it

— And then read another texture based on
transformed value!

— Much more efficient

© Kavita Bala, Computer Science, Cornell University

Dependent Texture Reads

bump map access which is and then added to the
retrieves a direction vector transformed EM texture coordinates

\‘.‘l \H/ retrieved
(b by) 22 sample

mitx E{'EI

© Kavita Bala, Computer Science, Cornell University

Reflections and Normal Maps

Environment Map Bump Mapping (EMBM)

© Kavita Bala, Computer Science, Cornell University

Rendering: forward shading

This 1s what we have done so far in 4620:

for each object in the scene
for each triangle in this object
for each fragment f in this triangle

gl FragColor = shade(f)
1f (depth of f < depthbuffer[x, y])

framebuffer[x, y] = gl FragColor
depthbuffer[x, y] = depth of f
end if
end for
end for
end for

© Kavita Bala, Computer Science, Cornell University

Output: the shaded scene

Drawbacks of Forward Shading

If shade (f) is very expensive
— e.g., many lights, shadow maps, complex shaders

— overdraw by closer geometry wastes work on each
fragment

© Kavita Bala, Computer Science, Cornell University

Drawbacks of Forward Shading

- Many other complex effects: Image processing effects

— tonemapping, screen-space ambient occlusion, bloom,
toon shaders etc., are very expensive

Overdraw: Real Example

© Kavita Bala(,g %gllztlere;c‘lleenlg Cér)ell University

Deferred Shading Step 1

Code structure 1s nearly the same as forward shading, with
one key difference:

for each object in the scene
for each triangle in this object
for each fragment f in this triangle

gl FragColor = material properties of £
if (depth of f < depthbuffer[x, vy])
gbuffer[x, y] = gl FragColor
depthbuffer[x, y] = depth of f
end if

end for
end for
end for

© Kavita Bala, Computer Science, Cornell University

Output: just the materials

Deferred Shading Step 2

for each fragment f in the gbuffer
framebuffer[x, y] = shade (f)
end for

Key improvement: shade () only executed for visible fragments.

Output 1s the same — \

© Kavita Bala, |

The ubershader

e Shader which computes lighting based on g-buffer: has
code for all material/lighting models 1n a single huge
shader.

shade (f) {
result = 0;
if (f is Lambertian) {
for each light
result += (n . 1) * diffuse;
end for
} else if (f is Blinn-Phong) {

} else if (f is ...) {

}

return result;

© Kavita Bala, Computer Science, Cornell University

Ubershader inputs

- Need access to all parameters of the material for the
current fragment:

— Blinn-Phong: kd, ks, n
— Cook-Torrance: kd, ks, alpha
— etc.
- Also need fragment position and surface normal
» Solution: write all that out from the material shaders:

{outputs} = {f.material, f.position, f.normal}
if (depth of f < depthbuffer[x, Vv])

gbuffer[x, y] = {outputs}

depthbuffer[x, y] = depth of £
end if

© Kavita Bala, Computer Science, Cornell University

G-buffer: multiple textures

"2:'

material properties

position normal

o e sy wurpaedl SCIENC, worion win

vy

Power of Deferred Shading

- Can do any image processing between step 1 and step 2!
— Recall: step 1 = fill g-buffer, step 2 = light/shade
— Could add a step 1.5 to filter the g-buffer

- Examples:
— bloom
— screen-space ambient occlusion

— high-dynamic range rendering (adaptive exposure control
and tone-mapping)

— silhouette detection/toon rendering
— “mood effects” (tinted colors, blurry or warped vision)

© Kavita Bala, Computer Science, Cornell University

ASSASSINS 4

CREEDII

N N X 4 & :/7
a - .
N et N,

S
MNTARURAFT

WINGS OF LIBERTY"

> B 4

© Kavita Bala, Computer Science, Cornell University

DirectX B DirectX 7 DirectX 8 DirectX 9 DirectX 8.0c Direct X 10 Direct X 11 Direct X 12
DirectX5 Mulitexturing T&L TextureStageState SM1x SM20 SM3.0
Riva 128 Riva TNT GeForca 256 GeForca 3 Cg GeaForceFX GeForce 6 OpenGL 4.0 OpenGL 4.2
e | TN R L a >
1968 1869 2000 2001 2002 2003 2004 2006 2009 2012

N = ol i iand
\ ! ‘ =g ’i et s ' 'l

1....=}\‘:\ - el

Quake 3 Giants Halo Far Cry UE3 BattleForge

© Kavita Bala, Computer Science, Cornell University

DirectX 6/0OpenGL 1.2: Quake 3

y
s et
St e e
P 20] o] o z ;{'2. 29[0] o
mn. 1R = o . Az F YN
DIFFUSE Lighting Multitexture Lightmaps

© Kavita Bala, Computer Science, Cornell University

Why multi-pass?

- Scalable

Quake Il Engine
Passes 1-4: accumulate bump map
Pass 5: Diffuse lighting
Pass 6: Base texture
Pass 7: Specular lighting
Pass 8: Emissive lighting
Pass 9: Volumetric lighting

9 O &~ W h =

© Kavita Bala, Computer Science, Cornell University

OpenGL 1.3/DirectX 7 (2001)

» Improved multi-texturing
—DOT3 (per-pixel lighting)

— Dependent texture reads
= EMBM: Environment Map Bump Mapping

— Cube maps & projected textures (for shadows)

- Support for HW Transform & Lighting
— Directional, point, and spot lights
— Vertex tweening & skinning: better animation
— Texture coordinate transformation & generation
- Example Hardware
— GeForce 256, ATl Radeon, Intel Extreme Graphics 2

© Kavita Bala, Computer Science, Cornell University

OpenGL 1.4/DirectX 8,SM 1.x / (2002)

- Programmable vertex shaders
— Up to 128 floating-point instructions

- Programmable pixel shaders
— Up to 16 fixed-point vector instructions and 4 textures
— 3D texture support
— 1 level of dependent texturing
— Advanced Render-to-Texture support

- Example Hardware

— GeForce 3, ATlI Radeon 8500, XGl Volari V3, Matrox
Parhelia

© Kavita Bala, Computer Science, Cornell University

SM 1.x-era Game: Halo

Vertex shaders used to add Fresnel reflection to ice
* Pixel shaders used to add glow to sun

- Render-to-texture used to distort pistol scope

- Dependent texturing used to animate & light water

. : . 3
p o , "" D a, "
& —= J
' . o

© Kavita Bala, Computer Science, Cornell University

-

’
.

Open GL 1.5/DirectX 9, SM 2.0(2003)

» Floating point pixel processing

— 16/32-bit floating point shaders, render targets &
textures

— Up to 64 vector instructions and 16 textures
- Arbitrary dependent texturing
 Longer vertex processing — 256 instructions

- Multiple Render Targets — up to 16 outputs per pixel
- Example Hardware

— GeForce FX 5900, ATI Radeon 9700, S3
DeltaChrome

© Kavita Bala, Computer Science, Cornell University

P «
| .
) ,f
f\
.,\ ; . ’/’,
i ¥ il
c o 4 !
i
/’
«
]
‘.f}:\“
—
A ae——— —~
= —— ——
AT s —_— e —— S =~
o ..,,:p -

P Ml {x 0:06/2:07 'C)H'D -

Matrox G400 Tech Demo EMBM (720p)

OpenGL 2.0 /DirectX 9.0c, SM 3.0(2004)

- Unified shader programming model

— Pixel & vertex shader flow control

— Infinite length vertex & pixel shaders
— Vertex shader texture lookups

» Floating-point filtering & blending

- Geometry instancing

- Example Hardware

— GeForce 6800, GeForce 7800 GTX

© Kavita Bala, Computer Science, Cornell University

Vertex Textures

Without Vertex Textures With Vertex Textures

Images used with permission from Pacific Fighters. © 2004 Developed by 1C:Maddox Games.
All rights reserved. © 2004 Ubi Soft Entertainment.

© Kavita Bala, Computer Science, Cornell University

SM 3.0-era Game: Unreal Engine 3

» 16-bit blending for high dynamic range lighting
- 16-bit filtering accelerates glow and exposure FX

- Long shaders & flow control for virtual
displacement mapping, soft shadows,
iridescence, fog, etc.

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

G70 (Based on NV40): 2005
GeForce 7800

T SRR
 cuicipisep

S

Eﬁﬁﬁﬁﬁ@ﬂﬁﬁﬁﬁ@

fY .M"‘OW

3 _Q_ _Q_ _Q_
DRAM(s) DRAM(s) DRAM(s) DRAM(s)

Vertex Shaders (G stage)

Input Vertex

- 8 parallel Data

Vertex
Texture
Fetch

Branch
Unit

L2 Texture
Cache

Viewport Processing

To Setup

© Kavita Bala, Computer Science, Cornell University

Fragment Shaders (FG)

° 24 para”el Texture Input Fragment

Data Data

L2 Texture Mini-ALU

Cache

v

Output
Shaded Fragments

© Kavita Bala, Computer Science, Cornell University

Raster Operators (FM)

- 16 ROPs Fragment Data
l

| Pixel X-Bar Interconnect

Multisample AA

¥

Frame Buffer
Partition

l

Memory

© Kavita Bala, Computer Science, Cornell University

2006 onwards

- Push for unified shader architecture?
— Why?

© Kavita Bala, Computer Science, Cornell University

Performance

transfer transform raster fragment frame
buffer

| n

Geometry Geometry . . Frame
g .
| | | |

CPU bound Vertex Bound Pixel Bound

© Kavita Bala, Computer Science, Cornell University

Bottleneck

- Reduce workload of each stage

- If performance does not change
— This is not problem

- Else..

© Kavita Bala, Computer Science, Cornell University

Vertex performance

- Reduce triangles
- Reduce vertex shaders

© Kavita Bala, Computer Science, Cornell University

Pixel shader performance

* Pixel shader
— Does resolution change performance?

- Reasons
—Memory bandwidth
— Shader performance
— Texture filtering

© Kavita Bala, Computer Science, Cornell University

Why Unified Shader Architecture?

- Load balancing

— Guesswork before
— Unified lets GPU do it right

© Kavita Bala, Computer Science, Cornell University

NV80 onwards

- Unified shader architecture

Ve_r_tex Shader

L]

Pixel Shader

Heavy Geometry
Workload Perf= 4

\{ertex Shader

k]

Pixel Shader

L]

Heavy Pixel
Workload Perf =38

© Kavita Bala, Computer Science, Cornell University

Why Unified architectures?

Unified Shader

Heavy Geometry
Workload Perf =12

Unified Shader

Heavy Pixel
Workload Perf = 12

© Kavita Bala, Computer Science, Cornell University

G80 (2006)

- Fundamental change in architecture

* Full Direct3D 10 Support

* DirectX10 Shader Model 4.0 Support

— Vertex Shader 4.0, Geometry Shader 4.0, Pixel
Shader 4.0

— Internal 128-bit Floating Point (FP32) Precision
» Unlimited shader lengths
- Up to 128 textures per pass

» Support for FP32 texture formats with filtering
- Non-Power of two texture support
- 8 Multiple Render Targets

© Kavita Bala, Computer Science, Cornell University

G80

108S8920.d peaiyy

juij{n|
b
(S]]
I
]
S 3 B8N
(&))
N L BE
N Kk BE
=
o =
N = HE
2 H | |EE
N o
LIl
B|R
bUw F
> H[E[E
L. BiEE
=
@ 0]
] | (]
£
g ml_l_-
© BEER
o |
(&
s @
-
1 H | B
sl o 8
R
s -
= - B
2 H |,
- >
L
B
=
B
[5]
H
—3
i}
A

© Kavita Bala, Computer Science, Cornell University

GTX TITAN GPU Engine Specs:

CUDA Cores 2688

Base Clock (MHz) 837

Boost Clock (MHz) 876

Texture Fill Rate (billion/sec) 187.5

GTX TITAN Memory Specs:

Memory Clock 6.0 Gbps
Standard Memory Config 6144 MB
Memory Interface GDDR5
Memory Interface Width 384-bit GDDR5
Memory Bandwidth (GB/sec) 288.4

GTX TITAN Support:

Important Technologies GPU Boost 2.0, PhysX, TXAA, NVIDIA G-SYNC-ready, SHIELD-ready
Other Supported Technologies 3D Vision, CUDA, Adaptive VSync, FXAA, NVIDIA Surround, SLI-ready
OpenGL 4.4

Bus Support PClI Express 3.0

Certified for Windows 7, Windows 8, Yes

Windows Vista, or Windows XP

3D Vision Ready Yes

Microsoft DirectX 12 API

Blu Ray 3D Yes

3D Gaming Yes

3D Vision Live (Photos and Videos) Yes

Memory Controller Memory Controller # Memory Controller

SMm

SMM

SMM

Raster Engine

EEEEEER
EEEEEN
EEEEEE
EEEEEN
F EEEEER
EEEEEN
EEEEEN

SMM

Raster Engine

SMM

GPC
SMM

SMM
GPC

SMM

SMM

EEEEEEEN|
EEEEEEEN |
EEEEEEEN|
6 DO
EEEEEEEE |
EEEEEEEN|
EEEEEEEN|

Raster Engine

=
SMM
—
]

PCI Express 3.0 Host Interface
o
n
n
2]
=
=
&)

Raster Engine

SMM

EEEmEEEE|
llllllllw
rd s il
EEEEEEEN

GPC
SMM

SMM
GPC

| —7—
rd _7
=
=
0
i _7

SMM

Raster Engine

© Kavita Bala, Computer Science, Cornell University

SMM

SMM

Raster Engine

rd =
=
b

GPC

SMM
GPC

19|jo13u0) Aiowap J9|jo5u0) Kiowsap J9)jo1u0) Kiowapy

Architectural Trends

- More general purpose
* More shaders: vertex, pixel, geometry, tesselation

- Longer shaders
—Length of shaders: 16, 128, ... unbounded

- More bits
— More texturing: more, bigger, and greater precision
— Better floating point
— Better HDR support

* More SIMD cores
— More parallelism

© Kavita Bala, Computer Science, Cornell University

Hardware
« 1999-2007: Frontier times

- 2015: Heterogeneous Parallel Computing

— New frontier
— CPUs (multicore)
— GPUs (SIMD or MIMD clusters)

- Programming these is going to be hard

© Kavita Bala, Computer Science, Cornell University

