
© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 24

GPUs

CS 4620 Lecture 24

1

© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 24

Announcements

• Prelim will be in homework hand back room after class
– Not before

• Solutions at end of class

2

© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 24

State of the art in GPUs

3

© Kavita Bala, Computer Science, Cornell University

Computer Graphics System

© Kavita Bala, Computer Science, Cornell University

The Framebuffer
• RGB

– floats for HDR and compute
• Alpha

– transparency
• Z-buffer

– hidden surface removal
• Double buffering

– avoid tearing

© Kavita Bala, Computer Science, Cornell University

Double buffering
• The monitor displays one image at a time
• Tearing/popping
• Use two buffers: one front and one back

Front Buffer

Back Buffer

As the front
buffer is
displayed...

the back buffer is
where graphics
data is sent to be
rendered

When the back
buffer is ready, the
buffers are
swapped

Display

© Kavita Bala, Computer Science, Cornell University

Buffers, buffers, buffers!!!

Source: Eric Haines

© Kavita Bala, Computer Science, Cornell University

The Fragment Processor
• Fragment

– Pixel to be
• Produce RGBA output
• Shader

– Color computation
– Texturing
– Per-pixel lighting
– Fog
– Blending
– Discarding fragments

© Kavita Bala, Computer Science, Cornell University

The Rasterizer
• Screen space coordinates into lines, polys
• Interpolates

– x,y
– RGB
– alpha
– z
– intensities
– normals
– texture coordinates
– custom values given by shaders

© Kavita Bala, Computer Science, Cornell University

Texture Mapping
• Workhorse

© Kavita Bala, Computer Science, Cornell University

Vertex Processor
• Coordinates

– in model units, out pixel units
• Shaders

– Vertex transformations
– Normal transformations, Normal normalization
– Per-vertex lighting

• Fixed function
– View volume clipping
– Homogeneous division
– Viewport mapping
– Backface culling

© Kavita Bala, Computer Science, Cornell University

CPU and Bus

© Kavita Bala, Computer Science, Cornell University

Computer Graphics System

© Kavita Bala, Computer Science, Cornell University

GPUs Faster than Moore’s Law

Peak
Performance
(Δ's/sec)

Year

HP CRX
SGI Iris

SGI GT

HP VRX

Stellar GS1000

SGI VGX

HP TVRX

SGI SkyWriter

SGI

E&S
F300

One-pixel polygons (~10M polygons @ 30Hz)

SGI
RE2

RE1
Megatek

86 88 90 92 94 96 98 00
10 4

10 5

10 6

10 7

10 8

10 9

UNC Pxpl4

UNC Pxpl5

UNC/HP PixelFlow

Flat
shading

Gouraud
shading

Antialiasing

Slope ~2.4x/year
(Moore's Law ~ 1.7x/year) SGI

IR
E&S
Harmony

SGI
R-Monster

Division VPX

E&S Freedom

Accel/VSIS
Voodoo

Glint

Division
Pxpl6

PC Graphics

Textures

SGI
Cobalt

Nvidia TNT
3DLabs

Graph courtesy of Professor John Poulton (from Eric Haines)

GeForce

104

105

106

107

108

109

ATI
Radeon 256

nVidia
G70

© Kavita Bala, Computer Science, Cornell University

GPU Parallelism
• GPUs are SIMD machines

• They exploit 2 types of parallelism
– Data: (vertex, triangle, fragment) parallelism

§ Process k triangles in parallel, m fragments in
parallel

– Task: pipeline
§ Pipeline in GPUs up to 800-1000 clocks long

(compare to 10-20 on CPUs)

© Kavita Bala, Computer Science, Cornell University

Multi-Threaded SIMD
• Very fine grain threads

• Latency
– Hide latency by switching to other threads
– Shared register file (very large, 65k 32-bit

registers now)
– Also prefetching

© Kavita Bala, Computer Science, Cornell University

Architectural Trends
• More general purpose
• More shaders: vertex, pixel, geometry, tesselation

• Longer shaders
– Length of shaders: 16, 128, … unbounded

• More bits
– More texturing: more, bigger, and greater precision
– Better floating point
– Better HDR support

• More SIMD cores
– More parallelism

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

OpenGL 4.2+

© Kavita Bala, Computer Science, Cornell University

GPU Pipeline
• Vertex shader

– Model and View Transform
– Vertex Shading

• Tessellation Shader
– Create subdivision surfaces

• Geometry Shader
– Create/destroy primitives

• Fragment Shader
– Fully general and really powerful

© Kavita Bala, Computer Science, Cornell University

Tessellation Shaders
• Adaptive subdivision

– Based on size, curvature, screen space extent
• Coarse models with

– GPU compression
– detailed displacement maps w/o detailed

geometry
– subdivision rules
– adapt quality to level of detail

§ smoother silhouettes
– Terrain proof of concept, Demo

© Kavita Bala, Computer Science, Cornell University

Display

Rasterization

Projection & Clipping

Transform & Lighting

Application

The dark ages (early-mid 1990’s), when there were only frame buffers for
normal PC’s.

This is where pipelines start for PC commodity graphics, prior to Fall of
1999.

This part of the pipeline reaches the consumer level with the introduction of
the NVIDIA GeForce256.

Hardware today has moved traditional application processing into the
graphics accelerator.

Some accelerators were no more than a simple chip that sped up linear
interpolation along a single span, so increasing fill rate.

Brief History

© Kavita Bala, Computer Science, Cornell University

BattleForge

OpenGL 4.0

2006

Direct X 11

2009

Direct X 10

OpenGL 4.2

2012

Direct X 12

© Kavita Bala, Computer Science, Cornell University

1997

© Kavita Bala, Computer Science, Cornell University

Era of GPUs

