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Antialiasing and Compositing
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Heightfield: Blinn’s original idea
• Single scalar, more computation to infer N’
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Parallax Mapping
• Problem with normal mapping

– No self-occlusion
– Supposed to be a height field but never see this 

occlusion across different viewing angles

• Parallax mapping
– Positions of objects move relative to one other 

as viewpoint changes
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Parallax Mapping

• Want Tideal

• Use Tp to approximate it
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Parallax Offset Limiting
• Problem: at steep viewing, can offset too 

much
• Limit offset
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Parallax Offset Limiting
• Widely used in games

– the standard in bump mapping

Normal Mapping Parallax Mapping Offset Limiting
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1,100 polygon object w/ 
parallax occlusion mapping

 1.5 million polygon
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Parallax Mapping
• Parallax Mapping
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Relief Mapping
• Aka Parallax occlusion mapping, relief 

mapping, steep parallax mapping

• Tries to find where the view ray intersects 
the height field
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Relief Mapping
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Sample along ray (green points)
Lookup violet points (texture values)

/* Infer the black line shape */
Compare green points with black points
Find intersect between two conditions

prev: green above black
next: green below black
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Parallax Mapping Relief Mapping
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Relief Mapping
• Box

• Terrain
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Crysis, Crytek
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Stepping back to images

• Texture maps are images
• Image rasterization quality
• Ray tracing quality

• Looking at single samples… need to go beyond
• Antialiasing and compositing
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Aliasing
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continuous image defined 
by ray tracing procedure

continuous image defined 
by a bunch of black rectangles

point sampling a 
continuous image
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Antialiasing

• A name for techniques to prevent aliasing
• In image generation, we need to filter

– Boils down to averaging the image over an area
– Weight by a filter

• Methods depend on source of image
– Rasterization (lines and polygons)
– Point sampling (e.g. raytracing)
– Texture mapping
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Rasterizing lines

• Define line as a 
rectangle

• Specify by two 
endpoints

• Ideal image: black 
inside, white 
outside
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Point sampling

• Approximate 
rectangle by 
drawing all pixels 
whose centers fall 
within the line

• Problem: all-or-
nothing leads to 
jaggies
– this is sampling 

with no filter (aka. 
point sampling)
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Point sampling
in action
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Antialiasing

• Point sampling makes an all-or-nothing choice in each 
pixel
– therefore steps are inevitable when the choice changes

• On bitmap devices this is necessary
– hence high resolutions required
– 600+ dpi in laser printers to make aliasing invisible

• On continuous-tone devices we can do better
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Antialiasing

• Basic idea: replace 
“is the image black 
at the pixel 
center?” with “how 
much is pixel 
covered by black?”

• Replace yes/no 
question with 
quantitative 
question
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Box filtering

• Pixel intensity is proportional to area of overlap with 
square pixel area

• Also called “unweighted area averaging” 
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Box filtering by supersampling

• Compute coverage 
fraction by 
counting subpixels

• Simple, accurate
• But slow
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Box filtering
in action
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Box filter
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Weighted filtering

• Box filtering problem: treats area near edge same as 
area near center
– results in pixel turning on “too abruptly”

• Alternative: weight area by a smooth function
– unweighted averaging corresponds to using a box function
– a Gaussian is a popular choice of smooth filter
– important property: normalization (unit integral)
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Gaussian filter
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Weighted filtering by supersampling

• Compute filtering 
integral by summing 
filter values for 
covered subpixels

• Simple, accurate
• But really slow
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Gaussian filtering
in action
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Box filtering
in action
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Point sampling
in action
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Filter comparison
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Point sampling Box filtering Gaussian filtering
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Antialiasing in ray tracing
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aliased image
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Antialiasing in ray tracing
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aliased image

one sample per pixel
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Antialiasing in ray tracing
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antialiased image

four samples per pixel
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Antialiasing in ray tracing
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one sample/pixel 9 samples/pixel
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// one sample per pixel
for iy = 0 to (ny-1) by 1
   for ix = 0 to (nx-1) by 1 {
      ray = camera.getRay(ix, iy);
      image.set(ix, iy, trace(ray));
   }

// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
   for ix = 0 to (nx-1) by 1 {
      Color sum = 0;
      for dx = -(ns-1)/2 to (ns-1)/2 by 1
         for dy = -(ns-1)/2 to (ns-1)/2 by 1 {
            x = ix + dx / ns;
            y = iy + dy / ns; 
            ray = camera.getRay(x, y);
            sum += trace(ray);
         }
      image.set(ix, iy, sum / (ns*ns));
   }
         

Details of supersampling

• For image coordinates with integer pixel centers:
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Details of supersampling

• For image coordinates in unit square
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// one sample per pixel
for iy = 0 to (ny-1) by 1
   for ix = 0 to (nx-1) by 1 {
      double x = (ix + 0.5) / nx;
      double y = (iy + 0.5) / ny;
      ray = camera.getRay(x, y);
      image.set(ix, iy, trace(ray));
   }

// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
   for ix = 0 to (nx-1) by 1 {
      Color sum = 0;
      for dx = 0 to (ns-1) by 1
         for dy = 0 to (ns-1) by 1 {
            x = (ix + (dx + 0.5) / ns) / nx;
            y = (iy + (dy + 0.5) / ns) / ny; 
            ray = camera.getRay(x, y);
            sum += trace(ray);
         }
      image.set(ix, iy, sum / (ns*ns));
   }
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Supersampling vs. multisampling

• Supersampling is terribly expensive
• GPUs use an approximation called multisampling

– Compute one shading value per pixel
– Store it at many subpixel samples, each with its own depth
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Multisample rasterization

• Each fragment carries several (color,depth) samples
– shading is computed per-fragment
– depth test is resolved per-sample
– final color is average of sample colors
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Antialiasing in textures

• Even with multisampling, we still only evaluate textures 
once per fragment

• Need to filter the texture somehow!
– perspective produces very high image frequencies
– (MIP Mapping)
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Compositing
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Compositing
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Combining images

• Often useful to combine elements of several images
• Trivial example: video crossfade

– smooth transition from one scene to another

– note: weights sum to 1.0
• no unexpected brightening or darkening
• no out-of-range results
– this is linear interpolation
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A B t = 0t = .3t = .6t = .8t = 1



Cornell CS4620 Fall 2015 • Lecture 23

Foreground and background

• In many cases just adding is not enough
• Example: compositing in film production

– shoot foreground and background separately
– also include CG elements
– this kind of thing has been done in analog for decades
– how should we do it digitally?
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Foreground and background

• How we compute new image varies with position

• Therefore, need to store some kind of tag to say what 
parts of the image are of interest
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use background
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Binary image mask

• First idea: store one bit per pixel
– answers question “is this pixel part of the foreground?”

– causes jaggies similar to point-sampled rasterization
– same problem, same solution: intermediate values
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Partial pixel coverage

• The problem: pixels near boundary are not strictly 
foreground or background

– how to represent this simply?
– interpolate boundary pixels between the fg. and bg. colors
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Alpha compositing

• Formalized in 1984 by Porter & Duff

• Store fraction of pixel covered, called α

– this is exactly like a spatially varying crossfade

• Convenient implementation
– 8 more bits makes 32
– 2 multiplies + 1 add per pixel for compositing
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A covers
area α

B shows
through
area (1 − α)

E = A over B

rE = ↵ArA + (1� ↵A)rB

gE = ↵AgA + (1� ↵A)gB

bE = ↵AbA + (1� ↵A)bB
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Alpha compositing—example
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