Antialiasing and Compositing

CS 4620 Lecture 23

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 I

Heightfield: Blinn’s original idea

- Single scalar, more computation to infer N’

>
ssdih

heightfield

texel values

© Kavita Bala, Computer Science, Cornell University

Parallax Mapping

* Problem with normal mapping
— No self-occlusion

— Supposed to be a height field but never see this
occlusion across different viewing angles

- Parallax mapping

— Positions of objects move relative to one other
as viewpoint changes

© Kavita Bala, Computer Science, Cornell University

Parallax Mapping

- Want T,

» Use T, to approximate it p..; = p +]

v.

View heightfield
vector

© Kavita Bala, Computer Science, Cornell University

Parallax Offset Limiting

- Problem: at steep viewing, can offset too
much

- Limit offset Padi = P —+ /?-’l.-’,l‘_(/

© Kavita Bala, Computer Science, Cornell University

Parallax Offset Limiting

- Widely used in games
—the standard in bump mapping

\.VA

T
- -
- J o { < :
\ = o 3
v o
- N ~
. ... | » ' /
r J e \
" 7
o S
' ”
.. .
. A e 9
'/
£ -
/s N\
’
vl
N/ .
h i /
AT S }
o "
» & |
"
\
\
J
/

1,100 polygon object w/ 1.5 m|II|on polygo
parallax occlusion mapping

© Kavita Bala, Computer Science, Cornell University

Parallax Mapping

- Parallax Mapping

© Kavita Bala, Computer Science, Cornell University

Relief Mapping

- Aka Parallax occlusion mapping, relief
mapping, steep parallax mapping

» Tries to find where the view ray intersects
the height field

© Kavita Bala, Computer Science, Cornell University

Relief Mapping

Sample along ray (green points)

Lookup violet points (texture values)
/* Infer the black line shape */
Compare green points with black points
Find intersect between two conditions

prev: green above black
next: green below black

Parallax Mapping Relief Mapping

© Kavita Bala, Computer Science, Cornell University

Relief Mapping

* Terrain

© Kavita Bala, Computer Science, Cornell University

Crysis, Crytek

© Kavita Bala, Computer Science, Cornell University

Stepping back to images

* Texture maps are images
* Image rasterization quality
* Ray tracing quality

* Looking at single samples... need to go beyond
* Antialiasing and compositing

Cornell CS4620 Fall 2015 » Lecture 23 w! prior ©2015 Kavita Bala, |

Aliasing

point sampling a
continuous image

continuous image defined
by ray tracing procedure

continuous image defined

by a bunch of black rectangles =

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 16

Antialiasing

* A name for techniques to prevent aliasing

* In image generation, we need to filter
— Boils down to averaging the image over an area
— Weight by a filter
* Methods depend on source of image
— Rasterization (lines and polygons)
— Point sampling (e.g. raytracing)
— Texture mapping

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 |7

Rasterizing lines

* Define line as a
rectangle

* Specify by two
endpoints

* |deal image: black

inside, white
outside

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 18

Point sampling

* Approximate
rectangle by
drawing all pixels
whose centers fall
within the line

* Problem:all-or-
nothing leads to
jaggies
— this is sampling

with no filter (aka.
point sampling)

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 19

Point sampling
In action

== — i © 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

20

Antialiasing

* Point sampling makes an all-or-nothing choice in each
pixel
— therefore steps are inevitable when the choice changes

* On bitmap devices this is necessary
— hence high resolutions required
— 600+ dpi in laser printers to make aliasing invisible

* On continuous-tone devices we can do better

© 2015 Kavita Bala

Cornell C54620 Fall 2015 « Lecture 23 w/ prior instructor Steve Marschner » 2|

Antialiasing

* Basic idea: replace
“is the image black
at the pixel
center?” with “how
much is pixel
covered by black?”

* Replace yes/no
question with
quantitative
question

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 22

Box filtering

* Pixel intensity is proportional to area of overlap with
square pixel area

* Also called “unweighted area averaging”

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 23

Box filtering by supersampling

 Compute coverage
fraction by

. . 4/25 covered
counting subpixels

6% gray

noooo.
n000o!
RS

* Simple, accurate 2 s 5 o
* But slow

Cornell CS4620 Fall 2015 * Lecture 23 ©2015 Kavita Bala),

w/ prior instructor Steve Marschner ¢

Box filter

LY SR
2r+ 1
. 1/2r+1) il <,
abox}?"[?}] — .
0 otherwise. ->—e -~
-r T
a1
1/(2r) < !
r —r<xz<r
fbox,'r‘(x) — : j
0 otherwise. 5
—r r
X —
Cornell CS4620 Fall 2015 « Lecture 23 ©2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Weighted filtering

* Box filtering problem: treats area near edge same as
area near center
— results in pixel turning on “too abruptly”

* Alternative: weight area by a smooth function
— unweighted averaging corresponds to using a box function
—a Gaussian is a popular choice of smooth filter

— important property: normalization (unit integral)

© 2015 Kavita Bala

Cornell C54620 Fall 2015 « Lecture 23 w/ prior instructor Steve Marschner » 27

Gaussian filter

054+
AN
I |
—1 1
X —

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 28

Weighted filtering by supersampling

 Compute filtering
integral by summing
filter values for
covered subpixels

* Simple, accurate

* But really slow

Cornell CS4620 Fall 2015 » Lecture 23 w! prior ©2015 Kavita Bala

Gaussian filtering
In action

© 2015 Kavita Bala

w/ prior instructor Steve Marschner * 30

Point sampling
In action

== — i © 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

32

Filter comparison

Point sampling Box filtering Gaussian filtering

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 33

Antialiasing in ray tracing

aliased image

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 34

Antialiasing in ray tracing

wnsed msge EEARARAEARARAER

one sample per pixel

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 35

Antialiasing in ray tracing

ancialiased image HH A RARANARHAARN

four samples per pixel

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 36

Antialiasing in ray tracing

one sample/pixel 9 samples/pixel

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 37

Details of supersampling

* For image coordinates with integer pixel centers:

/l one sample per pixel /l ns"2 samples per pixel
foriy =0 to (ny-1) by 1 foriy = 0 to (ny-1) by 1
forix =0to (nx-1) by 1{ forix =0 to (nx-1) by 1 {
ray = camera.getRay(ix, iy); Color sum = 0;
image.set(ix, iy, trace(ray)); for dx = -(ns-1)/2 to (ns-1)/2 by 1
} for dy = -(ns-1)/2 to (ns-1)/2 by 1 {
X =iX +dx/ns;
y =iy + dy/ns;
k 1 »
e ray = camera.getRay(x, y);
F TP sum += trace(ray);
e o o o }
> ke image.set(ix, iy, sum / (ns*ns));
e o o o }

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 38

Details of supersampling

* For image coordinates in unit square

/l one sample per pixel /l ns"2 samples per pixel
foriy =0 to (ny-1) by 1 foriy = 0 to (ny-1) by 1
forix =0to (nx-1) by 1{ forix =0 to (nx-1) by 1 {
double x = (ix + 0.5) / nx; Color sum = 0;
double y = (iy + 0.5) / ny; fordx =01to (ns-1) by 1
ray = camera.getRay(x, y); for dy =0 to (ns-1) by 1 {
image.set(ix, iy, trace(ray)); X = (iX + (dx + 0.5) / ns) / nx;
} y = (iy + (dy + 0.5) / ns) / ny;

ray = camera.getRay(x, y);
sum += trace(ray);

}

image.set(ix, iy, sum / (ns*ns));

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 39

Supersampling vs. multisampling

» Supersampling is terribly expensive
* GPUs use an approximation called multisampling

— Compute one shading value per pixel
— Store it at many subpixel samples, each with its own depth

Cornell CS4620 Fall 2015 » Lecture 23 w! prior _©2015 Kavita Bala

Multisample rasterization

* Each fragment carries several (color,depth) samples
— shading is computed per-fragment
— depth test is resolved per-sample
— final color is average of sample colors

multi-

single- -
sample ..

sample

oooooo

ooooooooooooooo

ooooooooo

ooooooooooo
oooooooooo

oooooooooooooooooo

.

oooooo
ooooooo
.

''''''''''''

0000000
ooooo

—
£
O
©
o
v
o)
o
o
S
....... 1)
§
X
b
e
—_

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 4]

Antialiasing in textures

e Even with multisampling, we still only evaluate textures
once per fragment

* Need to filter the texture somehow!
— perspective produces very high image frequencies

— (MIP Mapping)

© 2015 Kavita Bala

Cornell C54620 Fall 2015 « Lecture 23 w/ prior instructor Steve Marschner » 42

Compositing

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 43

Compositing

—
S
o
Y
o

<

&
>
[\]
S
o

)
o]

=
20
0
8
<
S
=
~
—_

Cornell CS4620 Fall 2015 * Lecture 23 w! prior _©2015 Kavita Bala , ,

Combining images

« Often useful to combine elements of several images

* Trivial example: video crossfade

— smooth transition from one scene to another

: ‘ ! ro =tra+ (1 —1t)rp

go =tga + (1 —t)gs
bo =tbys + (1 — t)bB

— note: weigﬁts sum to 1.0
* no unexpected brightening or darkening
* no out-of-range results

— this is linear interpolation

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 45

Foreground and background

* In many cases just adding is not enough

* Example: compositing in film production
— shoot foreground and background separately
—also include CG elements
— this kind of thing has been done in analog for decades

— how should we do it digitally?

© 2015 Kavita Bala

Cornell C54620 Fall 2015 « Lecture 23 w/ prior instructor Steve Marschner » 40

Foreground and background

* How we compute new image varies with position

use background

use foreground

[Chuang et al./ Corel]

* Therefore, need to store some kind of tag to say what
parts of the image are of interest

© 2015 Kavita Bala

Cornell C54620 Fall 2015 « Lecture 23 wl prior instructor Steve Marschner » 47

Binary image mask

* First idea: store one bit per pixel

— answers question “is this pixel part of the foreground?”

[Chuang et al./ Corel]

— causes jaggies similar to point-sampled rasterization
— same problem, same solution: intermediate values

Cornell C54620 Fall 2015 » Lecture 23 ©20]5 Kavita Bala , o

w/ prior instructor Steve Marschner ¢

Partial pixel coverage

* The problem: pixels near boundary are not strictly
foreground or background

1[1].8k8[0[0[0][0

B 111]1[.A4.1]0]0]0
1/1]1[1]4]|o]0]0
~11]1[1]1[.8|0]0]0

A > 1[1[1[1].6[0[0]0
1[1]1[1]5]0]0]0
{1[1]1][.8f.2]0]0]0
{1l1]9l5]l0]0]0]0

— how to represent this simply?
— interpolate boundary pixels between the fg. and bg. colors

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 49

Alpha compositing

* Formalized in 1984 by Porter & Duff

» Store fraction of pixel covered, called o

E = A over B
A covers |
area o TE = QATA + (1 — O‘A)TB
— | Bshows JE = QAga + (1 — O‘A)QB
through
ar:;a (gl) b = aaba + (1 — aA)bB

— this is exactly like a spatially varying crossfade

* Convenient implementation

— 8 more bits makes 32
— 2 multiplies + | add per pixel for compositing

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 23 50

Alpha compositing—example

[Chuang et al./ Corel]

Cornell CS4620 Fall 2015 + Lecture 23 ! prior _©2015 Kavita Bala

