
Cornell CS4620 Fall 2015 • Lecture 23

Antialiasing and Compositing

CS 4620 Lecture 23

1
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

© Kavita Bala, Computer Science, Cornell University

Heightfield: Blinn’s original idea
• Single scalar, more computation to infer N’

© Kavita Bala, Computer Science, Cornell University

Parallax Mapping
• Problem with normal mapping

– No self-occlusion
– Supposed to be a height field but never see this

occlusion across different viewing angles

• Parallax mapping
– Positions of objects move relative to one other

as viewpoint changes

© Kavita Bala, Computer Science, Cornell University

Parallax Mapping

• Want Tideal

• Use Tp to approximate it

v

h

© Kavita Bala, Computer Science, Cornell University

Parallax Offset Limiting
• Problem: at steep viewing, can offset too

much
• Limit offset

© Kavita Bala, Computer Science, Cornell University

Parallax Offset Limiting
• Widely used in games

– the standard in bump mapping

Normal Mapping Parallax Mapping Offset Limiting

© Kavita Bala, Computer Science, Cornell University

1,100 polygon object w/
parallax occlusion mapping

 1.5 million polygon

© Kavita Bala, Computer Science, Cornell University

Parallax Mapping
• Parallax Mapping

© Kavita Bala, Computer Science, Cornell University

Relief Mapping
• Aka Parallax occlusion mapping, relief

mapping, steep parallax mapping

• Tries to find where the view ray intersects
the height field

© Kavita Bala, Computer Science, Cornell University

Relief Mapping

© Kavita Bala, Computer Science, Cornell University

Sample along ray (green points)
Lookup violet points (texture values)

/* Infer the black line shape */
Compare green points with black points
Find intersect between two conditions

prev: green above black
next: green below black

© Kavita Bala, Computer Science, Cornell University

Parallax Mapping Relief Mapping

© Kavita Bala, Computer Science, Cornell University

Relief Mapping
• Box

• Terrain

© Kavita Bala, Computer Science, Cornell University

Crysis, Crytek

Cornell CS4620 Fall 2015 • Lecture 23

Stepping back to images

• Texture maps are images
• Image rasterization quality
• Ray tracing quality

• Looking at single samples… need to go beyond
• Antialiasing and compositing

15
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Aliasing

16
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

continuous image defined 
by ray tracing procedure

continuous image defined 
by a bunch of black rectangles

point sampling a 
continuous image

Cornell CS4620 Fall 2015 • Lecture 23

Antialiasing

• A name for techniques to prevent aliasing
• In image generation, we need to filter

– Boils down to averaging the image over an area
– Weight by a filter

• Methods depend on source of image
– Rasterization (lines and polygons)
– Point sampling (e.g. raytracing)
– Texture mapping

17
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Rasterizing lines

• Define line as a
rectangle

• Specify by two
endpoints

• Ideal image: black
inside, white
outside

18
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Point sampling

• Approximate
rectangle by
drawing all pixels
whose centers fall
within the line

• Problem: all-or-
nothing leads to
jaggies
– this is sampling

with no filter (aka.
point sampling)

19
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23 20
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Point sampling
in action

Cornell CS4620 Fall 2015 • Lecture 23

Antialiasing

• Point sampling makes an all-or-nothing choice in each
pixel
– therefore steps are inevitable when the choice changes

• On bitmap devices this is necessary
– hence high resolutions required
– 600+ dpi in laser printers to make aliasing invisible

• On continuous-tone devices we can do better

21
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Antialiasing

• Basic idea: replace
“is the image black
at the pixel
center?” with “how
much is pixel
covered by black?”

• Replace yes/no
question with
quantitative
question

22
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Box filtering

• Pixel intensity is proportional to area of overlap with
square pixel area

• Also called “unweighted area averaging”

23
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Box filtering by supersampling

• Compute coverage
fraction by
counting subpixels

• Simple, accurate
• But slow

24
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23 25
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Box filtering
in action

Cornell CS4620 Fall 2015 • Lecture 23

Box filter

26
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Weighted filtering

• Box filtering problem: treats area near edge same as
area near center
– results in pixel turning on “too abruptly”

• Alternative: weight area by a smooth function
– unweighted averaging corresponds to using a box function
– a Gaussian is a popular choice of smooth filter
– important property: normalization (unit integral)

27
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Gaussian filter

28
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Weighted filtering by supersampling

• Compute filtering
integral by summing
filter values for
covered subpixels

• Simple, accurate
• But really slow

29
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23 30
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Gaussian filtering
in action

Cornell CS4620 Fall 2015 • Lecture 23 31
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Box filtering
in action

Cornell CS4620 Fall 2015 • Lecture 23 32
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Point sampling
in action

Cornell CS4620 Fall 2015 • Lecture 23

Filter comparison

33
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Point sampling Box filtering Gaussian filtering

Cornell CS4620 Fall 2015 • Lecture 23

Antialiasing in ray tracing

34
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

aliased image

Cornell CS4620 Fall 2015 • Lecture 23

Antialiasing in ray tracing

35
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

aliased image

one sample per pixel

Cornell CS4620 Fall 2015 • Lecture 23

Antialiasing in ray tracing

36
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

antialiased image

four samples per pixel

Cornell CS4620 Fall 2015 • Lecture 23

Antialiasing in ray tracing

37
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

one sample/pixel 9 samples/pixel

Cornell CS4620 Fall 2015 • Lecture 23

// one sample per pixel
for iy = 0 to (ny-1) by 1
 for ix = 0 to (nx-1) by 1 {
 ray = camera.getRay(ix, iy);
 image.set(ix, iy, trace(ray));
 }

// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
 for ix = 0 to (nx-1) by 1 {
 Color sum = 0;
 for dx = -(ns-1)/2 to (ns-1)/2 by 1
 for dy = -(ns-1)/2 to (ns-1)/2 by 1 {
 x = ix + dx / ns;
 y = iy + dy / ns;
 ray = camera.getRay(x, y);
 sum += trace(ray);
 }
 image.set(ix, iy, sum / (ns*ns));
 }

Details of supersampling

• For image coordinates with integer pixel centers:

38
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Details of supersampling

• For image coordinates in unit square

39
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

// one sample per pixel
for iy = 0 to (ny-1) by 1
 for ix = 0 to (nx-1) by 1 {
 double x = (ix + 0.5) / nx;
 double y = (iy + 0.5) / ny;
 ray = camera.getRay(x, y);
 image.set(ix, iy, trace(ray));
 }

// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
 for ix = 0 to (nx-1) by 1 {
 Color sum = 0;
 for dx = 0 to (ns-1) by 1
 for dy = 0 to (ns-1) by 1 {
 x = (ix + (dx + 0.5) / ns) / nx;
 y = (iy + (dy + 0.5) / ns) / ny;
 ray = camera.getRay(x, y);
 sum += trace(ray);
 }
 image.set(ix, iy, sum / (ns*ns));
 }

Cornell CS4620 Fall 2015 • Lecture 23

Supersampling vs. multisampling

• Supersampling is terribly expensive
• GPUs use an approximation called multisampling

– Compute one shading value per pixel
– Store it at many subpixel samples, each with its own depth

40
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Multisample rasterization

• Each fragment carries several (color,depth) samples
– shading is computed per-fragment
– depth test is resolved per-sample
– final color is average of sample colors

41
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

[h
tt

p:
//w

w
w

.le
ar

no
pe

ng
l.c

om
]

single-  
sample

multi-  
sample

Cornell CS4620 Fall 2015 • Lecture 23

Antialiasing in textures

• Even with multisampling, we still only evaluate textures
once per fragment

• Need to filter the texture somehow!
– perspective produces very high image frequencies
– (MIP Mapping)

42
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Compositing

43
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Compositing

44
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

[T
ita

ni
c

; D
ig

ita
lD

om
ai

n;
 v

fx
hq

.c
om

]

Cornell CS4620 Fall 2015 • Lecture 23

Combining images

• Often useful to combine elements of several images
• Trivial example: video crossfade

– smooth transition from one scene to another

– note: weights sum to 1.0
• no unexpected brightening or darkening
• no out-of-range results
– this is linear interpolation

45
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

A B t = 0t = .3t = .6t = .8t = 1

Cornell CS4620 Fall 2015 • Lecture 23

Foreground and background

• In many cases just adding is not enough
• Example: compositing in film production

– shoot foreground and background separately
– also include CG elements
– this kind of thing has been done in analog for decades
– how should we do it digitally?

46
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Foreground and background

• How we compute new image varies with position

• Therefore, need to store some kind of tag to say what
parts of the image are of interest

47
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

use foreground

use background

[C
hu

an
g

et
 a

l.
/ C

or
el

]

Cornell CS4620 Fall 2015 • Lecture 23

Binary image mask

• First idea: store one bit per pixel
– answers question “is this pixel part of the foreground?”

– causes jaggies similar to point-sampled rasterization
– same problem, same solution: intermediate values

48
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

[C
hu

an
g

et
 a

l.
/ C

or
el

]

Cornell CS4620 Fall 2015 • Lecture 23

Partial pixel coverage

• The problem: pixels near boundary are not strictly
foreground or background

– how to represent this simply?
– interpolate boundary pixels between the fg. and bg. colors

49
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 23

Alpha compositing

• Formalized in 1984 by Porter & Duff

• Store fraction of pixel covered, called α

– this is exactly like a spatially varying crossfade

• Convenient implementation
– 8 more bits makes 32
– 2 multiplies + 1 add per pixel for compositing

50
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

A covers
area α

B shows
through
area (1 − α)

E = A over B

rE = ↵ArA + (1� ↵A)rB

gE = ↵AgA + (1� ↵A)gB

bE = ↵AbA + (1� ↵A)bB

Cornell CS4620 Fall 2015 • Lecture 23

Alpha compositing—example

51
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

[C
hu

an
g

et
 a

l.
/ C

or
el

]

