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Heightfield: Blinn’s original idea

- Single scalar, more computation to infer N’
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Parallax Mapping

* Problem with normal mapping
— No self-occlusion

— Supposed to be a height field but never see this
occlusion across different viewing angles

- Parallax mapping

— Positions of objects move relative to one other
as viewpoint changes
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Parallax Mapping

- Want T,

» Use T, to approximate it p..; = p + ]

v.

View heightfield
vector
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Parallax Offset Limiting

- Problem: at steep viewing, can offset too
much

- Limit offset Padi = P —+ /?-’l.-’,l‘_(/
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Parallax Offset Limiting

- Widely used in games
—the standard in bump mapping
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Parallax Mapping

- Parallax Mapping
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Relief Mapping

- Aka Parallax occlusion mapping, relief
mapping, steep parallax mapping

» Tries to find where the view ray intersects
the height field
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Relief Mapping




Sample along ray (green points)

Lookup violet points (texture values)
/* Infer the black line shape */
Compare green points with black points
Find intersect between two conditions

prev: green above black
next: green below black




Parallax Mapping Relief Mapping
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Relief Mapping

* Terrain
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Crysis, Crytek
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Stepping back to images

* Texture maps are images
* Image rasterization quality
* Ray tracing quality

* Looking at single samples... need to go beyond
* Antialiasing and compositing
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Aliasing

point sampling a
continuous image

continuous image defined
by ray tracing procedure

continuous image defined

by a bunch of black rectangles =
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Antialiasing

* A name for techniques to prevent aliasing

* In image generation, we need to filter
— Boils down to averaging the image over an area
— Weight by a filter
* Methods depend on source of image
— Rasterization (lines and polygons)
— Point sampling (e.g. raytracing)
— Texture mapping
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Rasterizing lines

* Define line as a
rectangle

* Specify by two
endpoints

* |deal image: black

inside, white
outside
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Point sampling

* Approximate
rectangle by
drawing all pixels
whose centers fall
within the line

* Problem:all-or-
nothing leads to
jaggies
— this is sampling

with no filter (aka.
point sampling)
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Point sampling
In action
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Antialiasing

* Point sampling makes an all-or-nothing choice in each
pixel
— therefore steps are inevitable when the choice changes

* On bitmap devices this is necessary
— hence high resolutions required
— 600+ dpi in laser printers to make aliasing invisible

* On continuous-tone devices we can do better
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Antialiasing

* Basic idea: replace
“is the image black
at the pixel
center?” with “how
much is pixel
covered by black?”

* Replace yes/no
question with
quantitative
question
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Box filtering

* Pixel intensity is proportional to area of overlap with
square pixel area

* Also called “unweighted area averaging”
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Box filtering by supersampling

 Compute coverage
fraction by

. . 4/25 covered
counting subpixels

6% gray

noooo.
n000o!
RS

* Simple, accurate 2 s 5 o
* But slow
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Weighted filtering

* Box filtering problem: treats area near edge same as
area near center
— results in pixel turning on “too abruptly”

* Alternative: weight area by a smooth function
— unweighted averaging corresponds to using a box function
—a Gaussian is a popular choice of smooth filter

— important property: normalization (unit integral)
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Gaussian filter
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Weighted filtering by supersampling

 Compute filtering
integral by summing
filter values for
covered subpixels

* Simple, accurate

* But really slow
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Gaussian filtering
In action
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Point sampling
In action
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Filter comparison

Point sampling Box filtering Gaussian filtering
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Antialiasing in ray tracing

aliased image
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Antialiasing in ray tracing

wnsed msge EEARARAEARARAER

one sample per pixel
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Antialiasing in ray tracing

ancialiased image  HH A RARANARHAARN

four samples per pixel
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Antialiasing in ray tracing

one sample/pixel 9 samples/pixel
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Details of supersampling

* For image coordinates with integer pixel centers:

/l one sample per pixel /l ns"2 samples per pixel
foriy =0 to (ny-1) by 1 foriy = 0 to (ny-1) by 1
forix =0to (nx-1) by 1{ forix =0 to (nx-1) by 1 {
ray = camera.getRay(ix, iy); Color sum = 0;
image.set(ix, iy, trace(ray)); for dx = -(ns-1)/2 to (ns-1)/2 by 1
} for dy = -(ns-1)/2 to (ns-1)/2 by 1 {
X =iX +dx/ns;
y =iy + dy/ns;
k 1 »
e ray = camera.getRay(x, y);
F TP sum += trace(ray);
e o o o }
> ke image.set(ix, iy, sum / (ns*ns));
e o o o }
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Details of supersampling

* For image coordinates in unit square

/l one sample per pixel /l ns"2 samples per pixel
foriy =0 to (ny-1) by 1 foriy = 0 to (ny-1) by 1
forix =0to (nx-1) by 1{ forix =0 to (nx-1) by 1 {
double x = (ix + 0.5) / nx; Color sum = 0;
double y = (iy + 0.5) / ny; fordx =01to (ns-1) by 1
ray = camera.getRay(x, y); for dy =0 to (ns-1) by 1 {
image.set(ix, iy, trace(ray)); X = (iX + (dx + 0.5) / ns) / nx;
} y = (iy + (dy + 0.5) / ns) / ny;

ray = camera.getRay(x, y);
sum += trace(ray);

}

image.set(ix, iy, sum / (ns*ns));
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Supersampling vs. multisampling

» Supersampling is terribly expensive
* GPUs use an approximation called multisampling

— Compute one shading value per pixel
— Store it at many subpixel samples, each with its own depth
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Multisample rasterization

* Each fragment carries several (color,depth) samples
— shading is computed per-fragment
— depth test is resolved per-sample
— final color is average of sample colors
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Antialiasing in textures

e Even with multisampling, we still only evaluate textures
once per fragment

* Need to filter the texture somehow!
— perspective produces very high image frequencies

— (MIP Mapping)
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Compositing
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Compositing
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Combining images

« Often useful to combine elements of several images

* Trivial example: video crossfade

— smooth transition from one scene to another

: ‘ ! ro =tra+ (1 —1t)rp

go =tga + (1 —t)gs
bo =tbys + (1 — t)bB

— note: weigﬁts sum to 1.0
* no unexpected brightening or darkening
* no out-of-range results

— this is linear interpolation
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Foreground and background

* In many cases just adding is not enough

* Example: compositing in film production
— shoot foreground and background separately
—also include CG elements
— this kind of thing has been done in analog for decades

— how should we do it digitally?
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Foreground and background

* How we compute new image varies with position

use background

use foreground

[Chuang et al./ Corel]

* Therefore, need to store some kind of tag to say what
parts of the image are of interest
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Binary image mask

* First idea: store one bit per pixel

— answers question “is this pixel part of the foreground?”

[Chuang et al./ Corel]

— causes jaggies similar to point-sampled rasterization
— same problem, same solution: intermediate values
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Partial pixel coverage

* The problem: pixels near boundary are not strictly
foreground or background

1[1].8k8[0[0[0][0

B 111]1[.A4.1]0]0]0
1/1]1[1]4]|o]0]0
~11]1[1]1[.8|0]0]0

A > 1[1[1[1].6[0[0]0
1[1]1[1]5]0]0]0
{1[1]1][.8f.2]0]0]0
{1l1]9l5]l0]0]0]0

— how to represent this simply?
— interpolate boundary pixels between the fg. and bg. colors
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Alpha compositing

* Formalized in 1984 by Porter & Duff

» Store fraction of pixel covered, called o

E = A over B
A covers |
area o TE = QATA + (1 — O‘A)TB
— | Bshows JE = QAga + (1 — O‘A)QB
through
ar:;a (gl ) b = aaba + (1 — aA)bB

— this is exactly like a spatially varying crossfade

* Convenient implementation

— 8 more bits makes 32
— 2 multiplies + | add per pixel for compositing
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Alpha compositing—example

[Chuang et al./ Corel]
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