
© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20

Textures

CS 4620 Lecture 20

1



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20

Announcements

• A4 out

• Prelim review
– Monday, 7-9, Maybe G01 Gates

• Prelim next week
– Oct 20th Tuesday 2015, 7:30, Olin Hall 155
– Prelim makeups: 9am on Tuesday

2



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20

How does it work?

3



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 19

Projector Function: Arbitrary Surfaces

Images courtesy Tito Pagan

• Non-parametric surfaces: project to parametric surface

4



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20

Corresponder functions

• Mapping from S to D can be many-to-one
– that is, every surface point gets only one color assigned
– but it is OK (and in fact useful) for multiple surface points to be 

mapped to the same texture point
• e.g. repeating tiles

5



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20

Corresponder Function

• Why?
– Flexibility

• Examples:
– Select a subset of the image for texturing
– Tile textures
– Decide what happens at boundaries

6



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20

i = un
x

� 0.5

j = v n
y

� 0.5

Pixels in texture images (texels)

• Related to texture coordinates in the same way as 
normalized image coordinates to pixel coordinates

7

✐

✐

✐

✐

✐

✐

✐

✐

58 3. Raster Images

Figure 3.10. Coordinates of a four pixel by three pixel screen. Note that in some APIs the
y-axis will point downwards.

Again, these coordinates are simply conventions, but they will be important

to remember later when implementing cameras and viewing transformations.

3.2.1 Pixel Values

So far we have described the values of pixels in terms of real numbers, represent-

ing intensity (possibly separately for red, green, and blue) at a point in the image.

This suggests that images should be arrays of floating-point numbers, with either

one (for grayscale, or black and white, images) or three (for RGB color images)

32-bit floating point numbers stored per pixel. This format is sometimes used,

when its precision and range of values are needed, but images have a lot of pix-

els and memory and bandwidth for storing and transmitting images are invariably

scarce. Just one ten-megapixel photograph would consume about 115 MB of

RAM in this format.Why 115 MB and not 120
MB?

Less range is required for images that are meant to be displayed directly.

While the range of possible light intensities is unbounded in principle, any given

device has a decidedly finite maximum intensity, so in many contexts it is per-

fectly sufficient for pixels to have a bounded range, usually taken to be [0, 1] for
simplicity. For instance, the possible values in an 8-bit image are 0, 1/255, 2/255, . . . , 254/255, 1.The denominator of 255,

rather than 256, is
awkward, but being able to
represent 0 and 1 exactly is
important.

Images stored with floating point numbers, allowing a wide range of values, are

often called high dynamic range (HDR) images to distinguish them from fixed-

range, or low dynamic range (LDR) images that are stored with integers. See

u
=

l

u
=

r

v = b

v = tj

i

i =
 –

.5

i =
 3

.5

j = 2.5

j = –.5 u 
= 

0

u 
= 

1

v = 0

v = 1

for an image of  
nx by ny pixels



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20

Texture lookups and wrapping

• In shading calculation, when you need a texture value you 
perform a texture lookup

• Convert (u, v) texture coordinates to (i, j) texel coordinates, 
and read a value from the image
– simplest: round to nearest (nearest neighbor lookup)
– various ways to be smarter and get smoother results

8

✐

✐

✐

✐

✐

✐

✐

✐

58 3. Raster Images

Figure 3.10. Coordinates of a four pixel by three pixel screen. Note that in some APIs the
y-axis will point downwards.

Again, these coordinates are simply conventions, but they will be important

to remember later when implementing cameras and viewing transformations.

3.2.1 Pixel Values

So far we have described the values of pixels in terms of real numbers, represent-

ing intensity (possibly separately for red, green, and blue) at a point in the image.

This suggests that images should be arrays of floating-point numbers, with either

one (for grayscale, or black and white, images) or three (for RGB color images)

32-bit floating point numbers stored per pixel. This format is sometimes used,

when its precision and range of values are needed, but images have a lot of pix-

els and memory and bandwidth for storing and transmitting images are invariably

scarce. Just one ten-megapixel photograph would consume about 115 MB of

RAM in this format.Why 115 MB and not 120
MB?

Less range is required for images that are meant to be displayed directly.

While the range of possible light intensities is unbounded in principle, any given

device has a decidedly finite maximum intensity, so in many contexts it is per-

fectly sufficient for pixels to have a bounded range, usually taken to be [0, 1] for
simplicity. For instance, the possible values in an 8-bit image are 0, 1/255, 2/255, . . . , 254/255, 1.The denominator of 255,

rather than 256, is
awkward, but being able to
represent 0 and 1 exactly is
important.

Images stored with floating point numbers, allowing a wide range of values, are

often called high dynamic range (HDR) images to distinguish them from fixed-

range, or low dynamic range (LDR) images that are stored with integers. See



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20

Texture lookups and wrapping

• What if i and j are out of range?
– option 1, clamp: take the nearest pixel that is in the image

– option 2, wrap: treat the texture as periodic, so that falling off the right 
side causes the look up to come in the left

9

i
pixel

= remainder(i
lookup

, n
x

)

i
pixel

= max(0,min(n
x

� 1, i
lookup

))



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20

Corresponder Function

• In OpenGL: wrapping mode

• Wrap: Repeats 
• Mirror

– Repeats but mirrored every other time; continuity across edges

• Clamp: Clamped to edge of texture
• Border: Clamped to border color

10

(-1,-1)

(2, 2)



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20

Wrapping modes

11

clamp wrap



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20

Perspective-Correct Texturing

• In hardware rendering
•Must be careful to interpolate texture coordinates correctly

12



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20 13



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20 14



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20 15



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20 16



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 20

Perspective-Correct Texturing

• In hardware rendering
•Must be careful to interpolate texture coordinates correctly

17


