
Cornell CS4620 Fall 2015 • Lecture 17

Pipeline

CS 4620 Lecture 17

1
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Announcements

• A3 due on Thu
– Will send mail about grading once finalized

2
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

Pipeline

3
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Hidden surface elimination

• We have discussed how to map primitives to image space
– projection and perspective are depth cues
– occlusion is another very important cue

4
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Back face culling

• For closed shapes you will never see the inside
– therefore only draw surfaces that face the camera

– implement by checking n . v
n

vn

v

5
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Painter’s algorithm

• Simplest way to do hidden surfaces
• Draw from back to front, use overwriting in framebuffer

6
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

B

A

C

E

D

F AB

C

F

D

E

Painter’s algorithm

• Amounts to a topological sort of the graph of occlusions
– that is, an edge from A to B means A sometimes occludes B
– any sort is valid

• ABCDEF
• BADCFE

– if there are cycles  
there is no sort

[F
ol

ey
 e

t
al

.]

7
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

The z buffer

• In many (most) applications maintaining a z sort is too
expensive
– changes all the time as the view changes
– many data structures exist, but complex

• Solution: draw in any order, keep track of closest
– allocate extra channel per pixel to keep track of closest depth

so far
– when drawing, compare object’s depth to current closest depth

and discard if greater

8
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

The z buffer

– An example of a memory-intensive brute force approach that
works and has become the standard

– Another one is texture mapping

[F
ol

ey
 e

t
al

.]

9
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Precision in z buffer

• The precision is distributed between the near and far
clipping planes
– this is why these planes have to exist
– also why you can’t always just set them to very small and very

large distances

• Generally use z’ (not world z) in z buffer

10
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space

11
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

Pipeline

12
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Demos

Shader toy
 https://www.shadertoy.com/

http://acko.net/files/gltalks/pixelfactory/online.html

13
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Pipeline for minimal operation

• Vertex stage (input: position / vtx; color)
– transform position (object to screen space)
– pass through color

• Rasterizer
– pass through color

• Fragment stage (output: color)
– write to color planes

14
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Result of minimal pipeline

15
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Pipeline for basic z buffer

• Vertex stage (input: position / vtx; color)
– transform position (object to screen space)
– pass through color

• Rasterizer
– interpolated parameter: z’ (screen z)
– pass through color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

16
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Result of z-buffer pipeline

17
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Flat shading

• Shade using the real normal of the triangle
– same result as ray tracing a bunch of triangles

• Leads to constant shading and faceted appearance
– truest view of the  

mesh geometry

[F
ol

ey
 e

t
al

.]

18
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Pipeline for flat shading

• Vertex stage (input: position / vtx; color and normal)
– transform position and normal (object to eye space)
– compute shaded color per triangle using normal
– transform position (eye to screen space)

• Rasterizer
– interpolated parameters: z’ (screen z)
– pass through color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

19
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Result of flat-shading pipeline

20
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Transforming normal vectors

• Transforming surface normals
– differences of points (and therefore tangents) transform OK
– normals do not --> use inverse transpose matrix

21
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

[G
ou

ra
ud

 t
he

si
s]

Gouraud shading

[F
ol

ey
 e

t
al

.]

• Often we’re trying to draw  
smooth surfaces, so facets  
are an artifact
– compute colors at  

vertices using  
vertex normals

– interpolate colors  
across triangles

– “Gouraud shading”
– “Smooth shading”

22
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Pipeline for Gouraud shading

• Vertex stage (input: position, color, and normal / vtx)
– transform position and normal (object to eye space)
– compute shaded color per vertex
– transform position (eye to screen space)

• Rasterizer
– interpolated parameters: z’ (screen z); r, g, b color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

23
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Result of Gouraud shading pipeline

24
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Local vs. infinite viewer, light

• Phong illumination requires geometric information:
– light vector (function of position)
– eye vector (function of position)
– surface normal (from application)

• Light and eye vectors change
– need to be computed (and  

normalized) for each vertex

25
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Local vs. infinite viewer, light

• Look at case when eye or light is far away:
– distant light source: nearly parallel illumination
– distant eye point: nearly orthographic projection
– in both cases, eye or light vector changes very little

• Optimization: approximate eye and/or light  
as infinitely far away

26
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Directional light

• Directional (infinitely distant) light source
– light vector always points in the same direction
– often specified by  

position [x y z 0]
– many pipelines are faster 

if you use directional lights

27
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Infinite viewer

• Orthographic camera
– projection direction is constant

• “Infinite viewer”
– even with perspective,  

can approximate eye vector  
using the image plane normal

– Blinn-Phong:  
light, eye, half vectors 
all constant!

28
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Vertex normals

• Need normals at vertices to 
compute Gouraud shading

• Best to get vtx. normals from 
the underlying geometry
– e. g. spheres example

• Otherwise have to infer vtx.  
normals from triangles
– simple scheme: average  

surrounding face normals

[F
ol

ey
 e

t
al

.]

29
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Non-diffuse Gouraud shading

• Can apply Gouraud shading to any illumination model
– it’s just an interpolation method

• Results are not so good with fast-varying models like
specular ones
– problems with any  

highlights smaller  
than a triangle

[F
ol

ey
 e

t
al

.]

30
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Per-pixel (Phong) shading

• Get higher quality by interpolating the normal
– just as easy as interpolating the color
– but now we are evaluating the illumination model per pixel

rather than per vertex (and normalizing the normal first)
– in pipeline, this means we are moving illumination from the

vertex processing stage to the fragment processing stage

31
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Per-pixel (Phong) shading

• Bottom line: produces much better highlights

[F
ol

ey
 e

t
al

.]

32
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Pipeline for per-pixel shading

• Vertex stage (input: position, color, and normal / vtx)
– transform position and normal (object to eye space)
– transform position (eye to screen space)
– pass through color

• Rasterizer
– interpolated parameters: z’ (screen z); r, g, b color; x, y, z normal

• Fragment stage (output: color, z’)
– compute shading using interpolated color and normal
– write to color planes only if interpolated z’ < current z’

33
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Result of per-pixel shading pipeline

34
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

Programming hardware pipelines

• Modern hardware graphics pipelines are flexible
– programmer defines exactly what happens at each stage
– do this by writing shader programs in domain-specific languages

called shading languages
– rasterization is fixed-function, as are some other operations

(depth test, many data conversions, …)

• One example: OpenGL and GLSL (GL Shading Language)
– several types of shaders process primitives and vertices; most

basic is the vertex program
– after rasterization, fragments are processed by a fragment

program

35
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 17

GLSL Shaders

36
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

framebuffer

uniform
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application

Cornell CS4620 Fall 2015 • Lecture 17

Demos

Shader toy
 https://www.shadertoy.com/

http://acko.net/files/gltalks/pixelfactory/online.html

37
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

