Rasterization

CS 4620 Lecture 16

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 I

Anhnouncements

e A3 due on Thu

— Will send mail about grading once finalized

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 2

Pipeline

. you are here
overview

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

Cornell CS4620 Fall 2015 « Lecture 16

VERTEX

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

3

Primitives

* Points

* Line segments
—and chains of connected line segments

* Triangles
* And that’s all!
— Curves? Approximate them with chains of line segments

—Polygons? Break them up into triangles
— Curved regions?! Approximate them with triangles

* Hardware desire: minimal primitives
—simple, uniform, repetitive: good for parallelism

—send curves, and the vertex shader will convert to primitives

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 4

Rasterization

* First job: enumerate the pixels covered by a primitive
—simple, aliased definition: pixels whose centers fall inside

* Second job: interpolate values across the primitive
—e.g. colors computed at vertices
—e.g.normals at vertices

—e.g. texture coordinates

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 5

Rasterizing lines

* Define line as a
rectangle

* Specify by two
endpoints

* |deal image: black
inside, white outside

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 * Lecture 16 w/ prior instructor Steve Marschner + ©

Point sampling

* Approximate rectangle
by drawing all pixels
whose centers fall
within the line

Cornell CS4620 Fall 2015 ¢ Lecture 16

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

7

Point sampling in action

Problem: Turns on
adjacent pixels

== — i © 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

8

Bresenham lines (midpoint alg.)

* Point sampling unit
width rectangle leads
to uneven line width

* Define line width
parallel to pixel grid

 That is, turn on the
single nearest pixel in
each column

* Note that 45° lines
are now thinner

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 9

Midpoint algorithm
In action

© 2015 Kavita Bala

e 10

w/ prior instructor Steve Marschner ¢

Algorithms for drawing lines

* line equation:
y=b+mx

* Simple algorithm:
evaluate line equation
per column

* W.lo.g. xo < x1;
O<m=<1

S - N W hA U 0 NN 00 v

 + 2 3 4 5 6 T 8 9 PP H R

for x = ceil(x0) to floor(x1)
y=b+m*x

output(x, round(y)) y = 191 +0.37 x

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 I

Optimizing line drawing

e Multiplying and
rounding is slow

* At each pixel the only
options are E and NE

cd=mx+1)+b-y

e d >= (0.5 decides
between E and NE

S - N W hA U 0 NN 00 v

 + 2 3 4 5 6 T 8 9 PP H R

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 12

Optimizing line drawing

cd=mx+1)+b-y

* Only need to update d
for integer steps in x
and y

Do that with addition

e Known as
“DDA” (digital
differential analyzer) o + 2 3 4 5 6 T 8 9 1B H R

S - N W hA U 0 NN 00 v

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 13

Midpoint line algorithm

x = ceil(x0)
y =round(m*x +Db)
d=m*xX+1)+b-y
while x < floor(x1)
ifd>=0.5
y+=1
d—=1
X+=1
d+=m I
output(x, y) 0

N W A U O NN O VO

 + 2 3 4 5 6 T 8 9 PP H R

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 14

Linear interpolation

* We often attach attributes to vertices
—e.g. computed diffuse color of a hair being drawn using lines

—want color to vary smoothly along a chain of line segments

* Basic definition of interpolation
—ID:f(x)=(1 —a) yp+ &y
—where a = (x —xp) / (x1 — Xxp)

* In the 2D case of a line segment, alpha is just the fraction

of the distance from (xq, yg) to (x1, y1)

Cornell CS4620 Fall 2015 « Lecture 16 w! prior ©2015 Kavita Bala, |

Linear interpolation

* Pixels are not
exactly on the line

p
* Define 2D function o
by projection on
line)

—this is linear in 2D IC:.v.

—therefore can use
DDA to interpolate

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 16

Alternate interpretation

* We are updating d and a as we step from pixel to pixel

— d tells us how far from the line we are

a tells us how far along the line we are

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 17

Alternate interpretation

* View loop as visiting
all pixels the line
passes through

Interpolate d and «
for each pixel

Only output frag.
if pixel is in band

* This makes linear
interpolation the
primary operation

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 18

Pixel-walk line rasterization

x = ceil(x0)
y =round(m*x +b)
d=m*x+b-y
while x < floor(x1)
ifd>0.5
y+=1;d—=1;
else
x+=1;,d+=1n;
if-0.6<d<0.5
output(x, y)

Cornell CS4620 Fall 2015 ¢ Lecture 16

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

19

Rasterizing triangles

* The most common case in most applications
—with good antialiasing can be the only case
—some systems render a line as two skinny triangles
* Triangle represented by three vertices
* Simple way to think of algorithm follows the pixel-walk
interpretation of line rasterization
—walk from pixel to pixel over (at least) the polygon’s area

—evaluate linear functions as you go
—use those functions to decide which pixels are inside

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 « Lecture 16 i prior instructor Steve Marschner » 20

Rasterizing triangles

* Input:
—three 2D points (the triangle’s vertices in pixel space)
° (.XO,)7()), (xla yl)a (xza)’2)

—parameter values at each vertex

* 400> -+->490n> 910> --+> 91n> 920> -+ > 92n
* Output:a list of fragments, each with

—the integer pixel coordinates (x, y)

—interpolated parameter values ¢, ..., g,

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 21

Rasterizing triangles

| evaluation of linear
functions on pixel
grid

2 functions defined by

parameter values
at vertices

3 using extra
parameters
to determine
fragment set

Cornell CS4620 Fall 2015 « Lecture 16

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

22

Incremental linear evaluation

* A linear (affine, really) function on the plane is:
q(7,y) = cex + cyy + ck
* Linear functions are efficient to evaluate on a grid:

Q(:U =+ 17y) — C:B(x + 1) T CylY T Ck — Q(xvy) T Cg
Q(xay - 1) = Cg T + Cy(y - 1) T Ck = Q(x7y) T Cy

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 23

Incremental linear evaluation

linEval(xm, xM, ym, yM, cx, cy, ck) {

// setup
gqRow = cx*xm + cy*ym + cKk;

// traversal
for y = ym to yM ({
qPix = qRow;
for x =xm to xM {
output(x, y, qPix);

qPix +=cx;
}
qRow += cy,
}
}
¢, = .005; Cy = 005;¢;, =0
(image size 100x100)
Cornell CS4620 Fall 2015 » Lecture 16 © 2015 Kavita Bala

24

w/ prior instructor Steve Marschner ¢

Defining parameter functions

* To interpolate parameters across a triangle we need to find

the ¢y, ¢y, and ¢ that define the (unique) linear function

that matches the given values at all 3 vertices

—this is 3 constraints on 3 unknown coefficients:
CxTo + CyYo + Ck = Qo (each states that the function
CoT1+ Cyy1 +ck = @1 agrees with the given value

CxT2 + CyY2 + Ck = Q2 at one vertex)

—leading to a 3x3 matrix equation for the coefficients:

o Yo 1 Ca B 40 (singular iff triangle
1 Y1 Cy| = |1 is degenerate)
x2 Y2 1] |ck g2 |

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 25

Defining parameter functions

* More efficient version: shift origin to (xy, yg)
q(z,y) = cz(x — o) + ¢y (y — Yo) + qo
q(x1,9y1) = cx(x1 — @o) + ¢y (Y1 — Yo) + g0 = @1

q(z2,y2) = cx(x2 — w0) + ¢y(Y2 — Yo) + 90 = @2
—now this is a 2x2 linear system (since g falls out):

(1 —20) (y1— yo)} [Ca:- _ [Q1 — QO}
(2 —x0) (Y2 — Yo) Cy | d2 — 4o
—solve using Cramer’s rule (see Shirley):

Cx = (AQ1Ay2 — AQ2Ay1)/(A$1Ay2 — AZCszl)
Cy = (AQQAiUl — AqlAZUQ)/(AiUlAyQ — ASUgAyl)

Cornell CS4620 Fall 2015 » Lecture 16 © 2015 Kavita Bala

w/ prior instructor Steve Marschner * 26

Defining parameter functions

linInterp(xm, xM, ym, yM, x0, y0, q0,
x1,¥1,ql, X8, y&, qR) {

// setup

det = (x1-x0)*(y2-y0) - (x8-x0)*(y1-y0);

¢x = ((q1-q0)*(yR2-y0) - (4R-q0)*(y1-y0)) / det;
¢y = ((@R—q0)*(x1-x0) - (q1-90)*(xR-x0)) / det;
gRow = ¢x*(xm-x0) + ¢cy*(ym-yO0) + qO;

// traversal (same as before)
for y = ym to yM {
qPix = qRow;
for x = xm to xM {
output(x, y, qPix);
qPix += ¢x;
}
gqRow += cy;
}
}

Cornell CS4620 Fall 2015 « Lecture 16 ©2015 Kavita Bala ,

w/ prior instructor Steve Marschner ¢

Interpolating several parameters

linInterp(xm, xM, ym, yM, n, X0, yO, qOI[],
x1,y1, ql[], X8, y2, qR[]) {

// setup
fork=0ton-1

// compute cx([k], cy[k], qRow[K]
// from qO[k], q1[k], qR[k]

// traversal
for y = ym to yM {
for k = 1 to n, qPix[k] = qRow[k];
for x = xm to xM {
output(x, y, qPix);
for k = 1 to n, gPix[k] += cx[K];
}
for k = 1 to n, qRow[k] += cy[K];
}
}

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 « Lecture 16 28

Clipping to the triangle

* Interpolate three barycentric
coordinates across the
plane

—recall each barycentric coord
is | at one vert.and 0 at
the other two

* Output fragments only
when all three are > 0.

Cornell CS4620 Fall 2015 ¢ Lecture 16

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

29

Rasterizing triangles

e Summary

| evaluation of linear
functions on pixel
grid

2 functions defined by

parameter values
at vertices

3 using extra
parameters
to determine
fragment set

Cornell CS4620 Fall 2015 « Lecture 16

\ \
© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

30

Pixel-walk (Pineda) rasterization

e Conservatively
visit a superset of
the pixels you want

* Interpolate linear
functions

 Use those functions
to determine when
to emit a fragment

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 « Lecture 16 wl prior instructor Steve Marschner » 5 |

Rasterizing triangles

 Exercise caution with = = = © 00 e e e e e e
rounding and i ' | o Bl Sl | el
arbitrary decisions

—need to visit these 7_ B
pixels once 1]

—but it’s important not
to visit them twice!

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 « Lecture 16 32

Clipping

e Rasterizer tends to assume triangles are on screen
— particularly problematic to have triangles crossing
the plane z=0
» After projection, before perspective divide
—clip against the planes x,y,z = 1,—1 (6 planes)
— primitive operation: clip triangle against axis-aligned plane

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 33

Clipping a triangle against a plane

* 4 cases, based on sidedness of vertices
—all in (keep)
—all out (discard)
—one in, two out (one clipped triangle)
—two in, one out (two clipped triangles)

L) =

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 34

