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Anhnouncements

e A3 due on Thu

— Will send mail about grading once finalized
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Pipeline

. you are here
overview

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this
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Primitives

* Points

* Line segments
—and chains of connected line segments

* Triangles
* And that’s all!
— Curves? Approximate them with chains of line segments

—Polygons? Break them up into triangles
— Curved regions?! Approximate them with triangles

* Hardware desire: minimal primitives
—simple, uniform, repetitive: good for parallelism

—send curves, and the vertex shader will convert to primitives
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Rasterization

* First job: enumerate the pixels covered by a primitive
—simple, aliased definition: pixels whose centers fall inside

* Second job: interpolate values across the primitive
—e.g. colors computed at vertices
—e.g.normals at vertices

—e.g. texture coordinates
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Rasterizing lines

* Define line as a
rectangle

* Specify by two
endpoints

* |deal image: black
inside, white outside
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Point sampling

* Approximate rectangle
by drawing all pixels
whose centers fall
within the line
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Point sampling in action

Problem: Turns on
adjacent pixels
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Bresenham lines (midpoint alg.)

* Point sampling unit
width rectangle leads
to uneven line width

* Define line width
parallel to pixel grid

 That is, turn on the
single nearest pixel in
each column

* Note that 45° lines
are now thinner
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Midpoint algorithm
In action
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Algorithms for drawing lines

* line equation:
y=b+mx

* Simple algorithm:
evaluate line equation
per column

* W.lo.g. xo < x1;
O<m=<1
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 + 2 3 4 5 6 T 8 9 PP H R

for x = ceil(x0) to floor(x1)
y=b+m*x

output(x, round(y)) y = 191 +0.37 x
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Optimizing line drawing

e Multiplying and
rounding is slow

* At each pixel the only
options are E and NE

cd=mx+1)+b-y

e d >= (0.5 decides
between E and NE
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Optimizing line drawing

cd=mx+1)+b-y

* Only need to update d
for integer steps in x
and y

Do that with addition

e Known as
“DDA” (digital
differential analyzer) o + 2 3 4 5 6 T 8 9 1B H R

S - N W hA U 0 NN 00 v
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Midpoint line algorithm

x = ceil(x0)
y =round(m*x +Db)
d=m*xX+1)+b-y
while x < floor(x1)
ifd>=0.5
y+=1
d—=1
X+=1
d+=m I
output(x, y) 0
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 + 2 3 4 5 6 T 8 9 PP H R
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Linear interpolation

* We often attach attributes to vertices
—e.g. computed diffuse color of a hair being drawn using lines

—want color to vary smoothly along a chain of line segments

* Basic definition of interpolation
—ID:f(x)=(1 —a) yp+ &y
—where a = (x —xp) / (x1 — Xxp)

* In the 2D case of a line segment, alpha is just the fraction

of the distance from (xq, yg) to (x1, y1)

Cornell CS4620 Fall 2015 « Lecture 16 w! prior ©2015 Kavita Bala, |



Linear interpolation

* Pixels are not
exactly on the line

p
* Define 2D function o
by projection on
line )

—this is linear in 2D IC:.v.

—therefore can use
DDA to interpolate
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Alternate interpretation

* We are updating d and a as we step from pixel to pixel

— d tells us how far from the line we are

a tells us how far along the line we are
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Alternate interpretation

* View loop as visiting
all pixels the line
passes through

Interpolate d and «
for each pixel

Only output frag.
if pixel is in band

* This makes linear
interpolation the
primary operation

© 2015 Kavita Bala

w/ prior instructor Steve Marschner ¢

Cornell CS4620 Fall 2015 ¢ Lecture 16 18



Pixel-walk line rasterization

x = ceil(x0)
y =round(m*x +b)
d=m*x+b-y
while x < floor(x1)
ifd>0.5
y+=1;d—=1;
else
x+=1;,d+=1n;
if-0.6<d<0.5
output(x, y)
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Rasterizing triangles

* The most common case in most applications
—with good antialiasing can be the only case
—some systems render a line as two skinny triangles
* Triangle represented by three vertices
* Simple way to think of algorithm follows the pixel-walk
interpretation of line rasterization
—walk from pixel to pixel over (at least) the polygon’s area

—evaluate linear functions as you go
—use those functions to decide which pixels are inside
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Rasterizing triangles

* Input:
—three 2D points (the triangle’s vertices in pixel space)
° (.XO, )7()), (xla yl)a (xza )’2)

—parameter values at each vertex

* 400> -+->490n> 910> --+> 91n> 920> -+ > 92n
* Output:a list of fragments, each with

—the integer pixel coordinates (x, y)

—interpolated parameter values ¢, ..., g,
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Rasterizing triangles

| evaluation of linear
functions on pixel
grid

2 functions defined by

parameter values
at vertices

3 using extra
parameters
to determine
fragment set
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Incremental linear evaluation

* A linear (affine, really) function on the plane is:
q(7,y) = cex + cyy + ck
* Linear functions are efficient to evaluate on a grid:

Q(:U =+ 17y) — C:B(x + 1) T CylY T Ck — Q(xvy) T Cg
Q(xay - 1) = Cg T + Cy(y - 1) T Ck = Q(x7y) T Cy
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Incremental linear evaluation

linEval(xm, xM, ym, yM, cx, cy, ck) {

// setup
gqRow = cx*xm + cy*ym + cKk;

// traversal
for y = ym to yM ({
qPix = qRow;
for x =xm to xM {
output(x, y, qPix);

qPix +=cx;
}
qRow += cy,
}
}
¢, = .005; Cy = 005;¢;, =0
(image size 100x100)
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Defining parameter functions

* To interpolate parameters across a triangle we need to find

the ¢y, ¢y, and ¢ that define the (unique) linear function

that matches the given values at all 3 vertices

—this is 3 constraints on 3 unknown coefficients:
CxTo + CyYo + Ck = Qo (each states that the function
CoT1+ Cyy1 +ck = @1 agrees with the given value

CxT2 + CyY2 + Ck = Q2 at one vertex)

—leading to a 3x3 matrix equation for the coefficients:

o Yo 1 Ca B 40 (singular iff triangle
1 Y1 Cy| = |1 is degenerate)
x2 Y2 1] |ck g2 |
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Defining parameter functions

* More efficient version: shift origin to (xy, yg)
q(z,y) = cz(x — o) + ¢y (y — Yo) + qo
q(x1,9y1) = cx(x1 — @o) + ¢y (Y1 — Yo) + g0 = @1

q(z2,y2) = cx(x2 — w0) + ¢y(Y2 — Yo) + 90 = @2
—now this is a 2x2 linear system (since g falls out):

(1 —20) (y1— yo)} [Ca:- _ [Q1 — QO}
(2 —x0) (Y2 — Yo) Cy | d2 — 4o
—solve using Cramer’s rule (see Shirley):

Cx = (AQ1Ay2 — AQ2Ay1)/(A$1Ay2 — AZCszl)
Cy = (AQQAiUl — AqlAZUQ)/(AiUlAyQ — ASUgAyl)
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Defining parameter functions

linInterp(xm, xM, ym, yM, x0, y0, q0,
x1,¥1,ql, X8, y&, qR) {

// setup

det = (x1-x0)*(y2-y0) - (x8-x0)*(y1-y0);

¢x = ((q1-q0)*(yR2-y0) - (4R-q0)*(y1-y0)) / det;
¢y = ((@R—q0)*(x1-x0) - (q1-90)*(xR-x0)) / det;
gRow = ¢x*(xm-x0) + ¢cy*(ym-yO0) + qO;

// traversal (same as before)
for y = ym to yM {
qPix = qRow;
for x = xm to xM {
output(x, y, qPix);
qPix += ¢x;
}
gqRow += cy;
}
}
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Interpolating several parameters

linInterp(xm, xM, ym, yM, n, X0, yO, qOI[],
x1,y1, ql[], X8, y2, qR[]) {

// setup
fork=0ton-1

// compute cx([k], cy[k], qRow[K]
// from qO[k], q1[k], qR[k]

// traversal
for y = ym to yM {
for k = 1 to n, qPix[k] = qRow[k];
for x = xm to xM {
output(x, y, qPix);
for k = 1 to n, gPix[k] += cx[K];
}
for k = 1 to n, qRow[k] += cy[K];
}
}
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Clipping to the triangle

* Interpolate three barycentric
coordinates across the
plane

—recall each barycentric coord
is | at one vert.and 0 at
the other two

* Output fragments only
when all three are > 0.
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Rasterizing triangles

e Summary

| evaluation of linear
functions on pixel
grid

2 functions defined by

parameter values
at vertices

3 using extra
parameters
to determine
fragment set
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Pixel-walk (Pineda) rasterization

e Conservatively
visit a superset of
the pixels you want

* Interpolate linear
functions

 Use those functions
to determine when
to emit a fragment

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 « Lecture 16 wl prior instructor Steve Marschner » 5 |



Rasterizing triangles

 Exercise caution with = = = © 00 e e e e e e
rounding and i ' | o Bl Sl | el
arbitrary decisions

—need to visit these 7_ B
pixels once 1]

—but it’s important not
to visit them twice!
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Clipping

e Rasterizer tends to assume triangles are on screen
— particularly problematic to have triangles crossing
the plane z=0
» After projection, before perspective divide
—clip against the planes x,y,z = 1,—1 (6 planes)
— primitive operation: clip triangle against axis-aligned plane
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Clipping a triangle against a plane

* 4 cases, based on sidedness of vertices
—all in (keep)
—all out (discard)
—one in, two out (one clipped triangle)
—two in, one out (two clipped triangles)

L) =
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