3D Viewing and Rasterization

CS 4620 Lecture 15

Announcements

- A3 due next Thu
-Will send mail about grading once finalized
- No 462 I class today

Plane projection in drawing

Pipeline of transformations

- Standard sequence of transforms

$\begin{array}{cc}\text { modeling } & \text { camera } \\ \text { transformation } & \text { transformation }\end{array}$

> projection viewport transformation $\begin{aligned} & \text { transformation }\end{aligned}$

canonical
view volume

Orthographic transformation chain

- Start with coordinates in object's local coordinates
- Transform into world coords (modeling transform, M_{m})
- Transform into eye coords (camera xf., $M_{c a m}=F_{c}{ }^{-1}$)
- Orthographic projection, $M_{\text {orth }}$
- Viewport transform, M_{vp}

$$
\mathbf{p}_{s}=\mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\mathrm{orth}} \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}} \mathbf{p}_{o}
$$

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{c} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\frac{n_{x}}{2} & 0 & 0 & \frac{n_{x}-1}{2} \\
0 & \frac{n_{y}}{2} & 0 & \frac{n_{y}-1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{\frac{r+l}{t-l}} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathrm{e} \\
0 & 0 & 0 & 1
\end{array}\right]^{-1} \mathbf{M}_{\mathrm{m}}\left[\begin{array}{c}
x_{o} \\
y_{0} \\
z_{o} \\
1
\end{array}\right]
$$

Perspective transformation chain

- Transform into world coords (modeling transform, M_{m})
- Transform into eye coords (camera xf., $M_{\text {cam }}=F_{c}^{-1}$)
- Perspective matrix, P
- Orthographic projection, $M_{\text {orth }}$
- Viewport transform, $M_{\text {vp }}$

$$
\mathbf{p}_{s}=\mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\mathrm{orth}} \mathbf{P} \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}} \mathbf{p}_{o}
$$

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{c} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\frac{n_{x}}{2} & 0 & 0 & \frac{n_{x}-1}{2} \\
0 & \frac{n_{y}}{2} & 0 & \frac{n_{y}-1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right] \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}}\left[\begin{array}{c}
x_{o} \\
y_{o} \\
z_{o} \\
1
\end{array}\right]
$$

Perspective projection

similar triangles:

$$
\begin{aligned}
& \frac{y^{\prime}}{d}=\frac{y}{-z} \\
& y^{\prime}=-d y / z
\end{aligned}
$$

Homogeneous coordinates revisited

- Perspective requires division
- that is not part of affine transformations
- in affine, parallel lines stay parallel
- therefore not vanishing point
- therefore no rays converging on viewpoint
- "True" purpose of homogeneous coords: projection

Homogeneous coordinates revisited

- Introduced w = I coordinate as a placeholder

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- used as a convenience for unifying translation with linear
- Can also allow arbitrary w

$$
\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
w x \\
w y \\
w z \\
w
\end{array}\right]
$$

- http://www.tomdalling.com/blog/modern-opengl/explaining-homogenous-coordinates-and-projectivegeometryl

Implications of w

- All scalar multiples of a 4-vector are equivalent
- When w is not zero, can divide by w
-therefore these points represent"normal" affine points
- When w is zero, it's a point at infinity, a.k.a. a direction
- this is the point where parallel lines intersect
- can also think of it as the vanishing point

$$
\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
w x \\
w y \\
w z \\
w
\end{array}\right]
$$

Cornell CS4620 Fall 2015 • Lecture I5

Perspective projection

to implement perspective, just move z to w :

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x / z \\
-d y / z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
d x \\
d y \\
-z
\end{array}\right]=\left[\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

View volume: perspective

View volume: perspective (clipped)

Carrying depth through perspective

- Perspective has a varying denominator-can't preserve depth!
- Compromise: preserve depth on near and far planes

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right] \sim\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
-z
\end{array}\right]=\left[\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

- that is, choose a and b so that $z^{\prime}(n)=n$ and $z^{\prime}(f)=f$.

$$
\begin{aligned}
& \tilde{z}(z)=a z+b \\
& z^{\prime}(z)=\frac{\tilde{z}}{-z}=\frac{a z+b}{-z} \\
& \text { want } z^{\prime}(n)=n \text { and } z^{\prime}(f)=f \\
& \text { result: } a=-(n+f) \text { and } b=n f \text { (try it) }
\end{aligned}
$$

Official perspective matrix

- Use near plane distance as the projection distance
-i.e., d = -n
- Scale by -I to have fewer minus signs
- scaling the matrix does not change the projective transformation

$$
\mathbf{P}=\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Perspective projection matrix

- Product of perspective matrix with orth. projection matrix $\mathbf{M}_{\text {per }}=\mathbf{M}_{\text {orth }} \mathbf{P}$

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{l+r}{l-r} & 0 \\
0 & \frac{2 n}{t-b} & \frac{b+t}{b-t} & 0 \\
0 & 0 & \frac{f+n}{n-f} & \frac{2 f n}{f-n} \\
0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Perspective transformation chain

- Transform into world coords (modeling transform, M_{m})
- Transform into eye coords (camera xf., $M_{\text {cam }}=F_{c}^{-1}$)
- Perspective matrix, P
- Orthographic projection, $M_{\text {orth }}$
- Viewport transform, $M_{\text {vp }}$

$$
\mathbf{p}_{s}=\mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\mathrm{orth}} \mathbf{P} \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}} \mathbf{p}_{o}
$$

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{c} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\frac{n_{x}}{2} & 0 & 0 & \frac{n_{x}-1}{2} \\
0 & \frac{n_{y}}{2} & 0 & \frac{n_{y}-1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right] \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}}\left[\begin{array}{c}
x_{o} \\
y_{o} \\
z_{o} \\
1
\end{array}\right]
$$

OpenGL view frustum: orthographic

Note OpenGL puts the near and far planes at $-n$ and $-f$ so that the user can give positive numbers

OpenGL view frustum: perspective

Note OpenGL puts the near and far planes at $-n$ and -f so that the user can give positive numbers

Pipeline of transformations

- Standard sequence of transforms
object space

$\begin{array}{cc}\text { modeling } & \text { camera } \\ \text { transformation } & \text { transformation }\end{array}$

> projection viewport transformation $\begin{aligned} & \text { transformation }\end{aligned}$

canonical
view volume

Demo

CS4620/5620

The graphics pipeline

- The standard approach to object-order graphics
- Many versions exist
- software, e.g. Pixar's REYES architecture
- many options for quality and flexibility
- hardware, e.g. graphics cards in PCs
- amazing performance: millions of triangles per frame
- We'll focus on an abstract version of hardware pipeline

Pipeline overview

you are here

3D transformations; shading
$\longrightarrow \quad$ VERTEX PROCESSING

TRANSFORMED GEOMETRY
conversion of primitives to pixels
blending, compositing, shading

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE
user sees this

DISPLAY

The graphics pipeline

- "Pipeline" because of the many stages
- very parallelizable
- leads to remarkable performance of graphics cards (many times the flops of the CPU at $\sim 1 / 3$ the clock speed)
-gigaflops (10 to the 9th power), teraflop (12th power), petaflops (15th power)
- GeForce Titax X, I GHz, 3072 CUDA cores

S

Top 10 ranking [edit]

Leaend:

Supercomputers

- Tianhe-2: 32,000 Xeon + 48,000 Xeon Phi
- 33 PFlops
- Current supercompute
-IBM Sequoia (petascale) Blue Gene (I6 petaflops)

Titan (supercomputer)

Active	Became operational October 29, 2012
Sponsors	US DOE and NOAA (<10\%)
Operators	Cray Inc.
Location	Oak Ridge National Laboratory
Architecture	18,688 AMD Opteron 6274 16-core CPUs 18,688 Nvidia Tesla K20X GPUs
Power	8.2 MW
Operating system	Cray Linux Environment
Space	$404 \mathrm{~m}^{2}$ (4352 ft^{2})
Memory	693.5 TIB (584 TB CPU and 109.5 TiB GPU)
Storage	40 PB , 1.4 TB/s IO Lustre filesystem
Speed	17.59 petaFLOPS (LINPACK) 27 petaFLOPS theoretical peak
Cost	\$97 million
Ranking	TOP500: \#2, June 2013 ${ }^{[1]}$
Purpose	Scientific research
Legacy	Ranked 1 on TOP500 when built. First GPU baser TOP500 mputer to perform over 10 perar Lui'S
Web site	www.olcf.ornl.gov/titan/ [${ }^{\text {co }}$

