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3D Transformations and Perspective

CS 4620 Lecture 12
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Announcements

• Demos on Monday
– If you can’t make it, send mail to cs4620-staff-l@cornell.edu
– Post to piazza

• A3 out tonight
– Written and code due on Thu before break
– Grading will be after break
– Start early

• Hierarchies, transformations

• 4621 class today. PPA1 out tonight
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General Rotation Matrices

• A rotation in 2D is around a point
• A rotation in 3D is around an axis

– so 3D rotation is w.r.t a line, not just a point

2D 3D
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Specifying Rotations

• Many ways to specify rotation
– Indirectly through frame transformations
– Directly through

• Euler angles: 3 angles about 3 axes
• (Axis, angle) rotation: based on Euler’s theorem
• Quaternions
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Building general rotations

• Construct frame and change coordinates
– choose p, u, v, w to be orthonormal frame with p and u 

matching the rotation axis

– apply similarity transform T = F Rx(θ ) F–1

– interpretation: move to x axis, rotate, move back
– interpretation: rewrite u-axis rotation in new coordinates
– (each is equally valid)

– (note above is linear transform; add affine coordinate)
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Derivation of General Rotation Matrix
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• Axis angle rotation
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Axis-angle ONB
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Axis-angle rotation
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Rotation Matrix for Axis-Angle
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Transforming normal vectors

• Transforming surface normals
– differences of points (and therefore tangents) transform OK
– normals do not. Instead, use inverse transpose matrix
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Perspective
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Parallel projection

• To render an image of a 3D scene, we project it onto a 
plane

• Simplest kind of projection is parallel projection
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Classical projections—parallel

• Emphasis on cube-like objects
– traditional in mechanical and architectural drawing

Planar Geometric Projections

Parallel

Oblique

Multiview
Orthographic

Perspective

One-pointTwo-pointThree-pointOrthographic

Axonometric
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Orthographic
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Orthographic

– projection plane parallel to a coordinate plane
– projection direction perpendicular to projection plane
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Off-axis parallel

axonometric: projection 
plane perpendicular to 
projection direction but not 
parallel to coordinate planes

oblique: projection plane 
parallel to a coordinate plane 
but not perpendicular to 
projection direction
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“Orthographic” projection

• In graphics usually we lump axonometric with orthographic
– projection plane  

perpendicular to 
projection direction

– image height 
determines size  
of objects in image
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View volume: orthographic

19



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 12

Oblique projection

• View direction no longer coincides with projection plane 
normal (one more parameter)
– objects at different distances 

still same size
– objects are shifted 

in the image  
depending on their  
depth
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Specifying views in a ray tracer
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  <camera type="ParallelCamera"> 
    <viewPoint>2.0 4.0 7.0</viewPoint> 
    <viewDir>–2.0 –4.0 –7.0</viewDir> 
    <viewUp>0.0 1.0 0.0</viewUp> 
    <viewWidth>8.0</viewWidth> 
    <viewHeight>4.5</viewHeight> 
  </camera>
  <camera type="ParallelCamera"> 
    <viewPoint>2.0 4.0 7.0</viewPoint> 
    <viewDir>–2.0 –4.0 –7.0</viewDir> 
    <projNormal>0.0 0.0 1.0</projNormal> 
    <viewUp>0.0 1.0 0.0</viewUp> 
    <viewWidth>8.0</viewWidth> 
    <viewHeight>4.5</viewHeight> 
  </camera>
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History of projection

• Ancient times: Greeks wrote about laws of perspective
• Renaissance: perspective is adopted by artists

Duccio c. 1308
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History of projection

• Later Renaissance: perspective formalized precisely

da Vinci c. 1498
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Plane projection in drawing
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Plane projection in photography

• This is another model for what we are doing
– applies more directly in realistic rendering
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Classical projections—perspective

• Emphasis on cube-like objects
– traditional in mechanical and architectural drawing

Planar Geometric Projections

Parallel

Oblique

Multiview
Orthographic

Perspective

One-point Two-point Three-pointOrthographic
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Perspective projection (normal)

• Perspective is projection by lines through a point; 
• “normal” = plane perpendicular to view direction

– magnification determined by:
• image height
• object depth
• image plane distance

– f.o.v. α = 2 atan(h/(2d))
– y’ = d y / z

– “normal” case corresponds 
to common types of cameras
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View volume: perspective
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Shifted perspective projection

• Perspective but with projection plane not perpendicular to 
view direction
– additional parameter:  

projection plane normal
– exactly equivalent to 

cropping out an off-center 
rectangle from a larger 
“normal” perspective

– corresponds to view camera  
in photography
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Generating eye rays—perspective

• Use window analogy directly
• Ray origin (constant): viewpoint
• Ray direction (varying): toward pixel position on viewing 

window

30
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Generating eye rays—perspective

• Positioning the view rectangle
– establish three vectors to be  

camera basis: u, v, w 
– view rectangle is parallel  

to u–v plane, at w = –d,  
specified by l, r, t, b

• Generating rays
– for (u, v) in [l, r] × [b, t]
– ray.origin = e 
– ray.direction = –d w + u u + v v

31
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Oblique perspective views

• Positioning the view rectangle
– establish three vectors to be  

camera basis: u, v, w 
– view rectangle is the same,  

but shifted so that the  
center is in the  
direction d from e

• Generating rays
– for (u, v) in [l, r] × [b, t]
– ray.origin = e 
– ray.direction = d d + u u + v v
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Field of view (or f.o.v.)

• The angle between the rays corresponding to opposite 
edges of a perspective image
– simpler to compute for “normal” perspective
– have to decide to measure vert., horiz., or diag.

• In cameras, determined by focal length
– confusing because of many image sizes
– for 35mm format (36mm by 24mm image)

• 18mm = 67° v.f.o.v. — super-wide angle
• 28mm = 46° v.f.o.v. — wide angle
• 50mm = 27° v.f.o.v. — “normal”
• 100mm = 14° v.f.o.v. — narrow angle (“telephoto”)
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Field of view

• Determines “strength” of perspective effects

close viewpoint  
wide angle

prominent foreshortening

far viewpoint  
narrow angle

little foreshortening
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Choice of field of view

• In photography, wide angle lenses are specialty tools
– “hard to work with” 
– easy to create weird-looking  

perspective effects

• In graphics, you can type in  
whatever f.o.v. you want
– and people often type in  

big numbers!
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Perspective distortions

• Lengths, length ratios

[C
ar

lb
om

 &
 P

ac
io

re
k 

78
]

36



© 2015 Kavita Bala •Cornell CS4620 Fall 2015 • Lecture 12

Pipeline of transformations

• Standard sequence of transforms
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7.1. Viewing Transformations 147
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Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates


