
Cornell CS4620 Fall 2015 • Lecture 10

Hierarchies

CS 4620 Lecture 10

1
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Announcements

• Released a GPU diagnostic

• A2 due this week
– Demos on Monday (like last time)
– Demo sign ups will be up shortly

2
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Pipeline of transformations

• Standard sequence of transforms

3
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

✐

✐

✐

✐

✐

✐

✐

✐

7.1. Viewing Transformations 147

object space

world space

camera space

canonical
view volume

sc
re

e
n

 s
p

a
ce

modeling
transformation

viewport
transformation

projection
transformation

camera
transformation

Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates

Cornell CS4620 Fall 2015 • Lecture 10

Coordinate frame summary

• Frame = point plus basis
• Frame matrix (frame-to-canonical) is

• Move points to and from frame by multiplying with F

• Move transformations using similarity transforms

4
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Rigid motions

• A transform made up of only translation and rotation is
a rigid motion or a rigid body transformation

• The linear part is an orthonormal matrix

• Inverse of orthonormal matrix is transpose
– so inverse of rigid motion is easy:

5
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Hierarchies and Transformations

6
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Data structures with transforms

• Representing a drawing (“scene”)
• List of objects
• Transform for each object

– can use minimal primitives: ellipse is transformed circle
– transform applies to points of object

7
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Example

• Can represent drawing with flat list
– but editing operations require updating many transforms

8
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Groups of objects

• Treat a set of objects as one
• Introduce new object type: group

– contains list of references to member objects

9
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Example

• Add group as a new object type
– lets the data structure reflect the drawing structure
– enables high-level editing by changing just one node

10
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Groups of groups: hierarchies

• This makes the model into a tree
– interior nodes = groups
– leaf nodes = objects
– edges = membership of object in group

• Hierarchies
– Important for modeling and animation
– Models have parts. Parts have convenient coordinate system
– E.g., moon around earth, earth (+moon) around sun, sun

around galaxy center, galaxies spinning out in the universe

11
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10 12
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

The Scene Graph (tree)

• Grouping applied hierarchically
• Scene graph: name for various kinds of graph structures

(nodes connected together) used to represent scenes
• Simplest form: tree

– every node has one parent
– leaf nodes are identified 

with objects in the scene

13
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Concatenation and hierarchy

• Transforms associated with nodes or edges
• Each transform applies to all geometry below it

– want group transform to transform each member
– members already transformed—concatenate

14
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Concatenation and hierarchy

• Transforms associated with nodes or edges
• Each transform applies to all geometry below it

– want group transform to transform each member
– members already transformed—concatenate

• Frame transform for object is product of all matrices
along path from root
– each object’s transform describes relationship between its

local coordinates and its group’s coordinates
– frame-to-canonical transform is the result of repeatedly

changing coordinates from group to containing group

15
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Large scenes

• Lot of replicated units

• Instancing
– Simple idea: allow an object to be a member of more than

one group at once
– transform different in each case
– leads to linked copies
– single editing operation changes all instances

16
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Example

• Allow multiple references to nodes
– reflects more of drawing structure
– allows editing of repeated parts in one operation

17
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

The Scene Graph (with instances)

• With instances, there is no more tree
– an object that is instanced multiple  

times has more than one parent

• Transform tree becomes DAG
– directed acyclic graph
– group is not allowed to contain  

itself, even indirectly

• Transforms still accumulate  
along path from root
– now paths from root to leaves 

are identified with scene objects

18
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Implementing a hierarchy

• Object-oriented language is convenient
– define shapes and groups as derived from single class

abstract class Shape {
 void draw();
}

class Square extends Shape {
 void draw() {
 // draw unit square
 }
}

class Circle extends Shape {
 void draw() {
 // draw unit circle
 }
}

19
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Implementing traversal

• Pass a transform down the hierarchy
– before drawing, concatenate

abstract class Shape {
 void draw(Transform t_c);
}

class Square extends Shape {
 void draw(Transform t_c) {
 // draw t_c * unit square
 }
}

class Circle extends Shape {
 void draw(Transform t_c) {
 // draw t_c * unit circle
 }
}

class Group extends Shape {
 Transform t;
 ShapeList members;
 void draw(Transform t_c) {
 for (m in members) {
 m.draw(t_c * t);
 }
 }
}

20
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Basic Scene Graph operations

• Editing a transformation
– good to present usable UI

• Getting transform of object in canonical (world) frame
– traverse path from root to leaf

• Grouping and ungrouping
– can do these operations without moving anything
– group: insert identity node
– ungroup: remove node, push transform to children

21
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Adding more than geometry

• Objects have properties besides shape
– color, shading parameters
– approximation parameters (e.g. precision of subdividing

curved surfaces into triangles)
– behavior in response to user input
– …

• Setting properties for entire groups is useful
– paint entire window green

• Many systems include some kind of property nodes
– in traversal they are read as, e.g., “set current color”

22
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Scene Graph variations

• Where transforms go
– in every node
– on edges
– in group nodes only
– in special Transform nodes

• Tree vs. DAG
• Nodes for cameras and lights?

23
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Hierarchy Example

• Articulated body
• Every object has local frame of reference

• T (UA to Tr) T(LA to UA) T (F to LA)

• Think of applying it to a point
• Think of applying it to the coordinate system

24
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

UA

LA
Tr

H

F
UL

LL

Cornell CS4620 Fall 2015 • Lecture 10

In OpenGL

• Have a stack of transforms

• You push and pop transforms on the stack
• glPushMatrix, glMultMatrix, glPopMatrix

• Depth first traversal
• Start with identity
• Push as you go down, pop as you go up

25
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Cornell CS4620 Fall 2015 • Lecture 10

Pixar’s Lamp

26
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Pixar

Cornell CS4620 Fall 2015 • Lecture 10

Hierarchy

27
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

Base

Torso

Neck
Head

Base

Torso

Neck

Head

Cornell CS4620 Fall 2015 • Lecture 10

Local Coordinate Systems

28
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

McMillan

Cornell CS4620 Fall 2015 • Lecture 10

Transforms for Head

– Translate (0, 0, 2.5)
– Rotate (-120, 0, 1, 0)
– Translate (12, 0, 0)
– Rotate (65, 0, 1, 0)
– Translate (12, 0, 0)
– Rotate (30, 0, 1, 0)

29
© 2015 Kavita Bala

w/ prior instructor Steve Marschner •

McMillan

– Translate (0, 0, 2.5)
– Rotate (-120, 0, 1, 0)
– Translate (12, 0, 0)
– Rotate (65, 0, 1, 0)
– Translate (12, 0, 0)
– Rotate (30, 0, 1, 0)

