Hierarchies

CS 4620 Lecture 10

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 « Lecture 10 w/ prior instructor Steve Marschner * |

Announcements

* Released a GPU diagnostic

* A2 due this week
— Demos on Monday (like last time)
— Demo sign ups will be up shortly

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 « Lecture 10 w/ prior instructor Steve Marschner * 2

Pipeline of transformations

* Standard sequence of transforms

object space camera space

screen space

modeling , c?merat' projection viewport
transformation rangggrmation transformation transformation

S\

world space canonical
view volume

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 ¢ Lecture 10 w/ Prior instructor Steve Marschner ° 3

Coordinate frame summary

* Frame = point plus basis
* Frame matrix (frame-to-canonical) is

v b
0 0 1

* Move points to and from frame b); multiplying with F

F =

—1
Pe = I'pr pr = 1" "pe
* Move transformations using similarity transforms

T,=FITprF !t Tp=F 'T.F

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 « Lecture 10 w/ prior instructor Steve Marschner « 4

Rigid motions

* A transform made up of only translation and rotation is
a rigid motion or a rigid body transformation

* The linear part is an orthonormal matrix

_ @ u
=10 1

* Inverse of orthonormal matrix is transpose

— so inverse of rigid motion is easy:

.
1p |@ —Qul @ u
TR0 1 o1

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 « Lecture 10 w/ prior instructor Steve Marschner ¢ 5

Hierarchies and Transformations

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 ¢ Lecture 10 w/ Prior instructor Steve Marschner ° 6

Data structures with transforms

* Representing a drawing (“‘scene”

* List of objects
* Transform for each object

— can use minimal primitives: ellipse is transformed circle

— transform applies to points of object

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 « Lecture 10 w/ prior instructor Steve Marschner ¢« 7

Example

* Can represent drawing with flat list

— but editing operations require updating many transforms

0 A MR O RN B Wl

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 * Lecture 10 w/ prior instructor Steve Marschner 8

Groups of objects

* Treat a set of objects as one
* Introduce new object type: group

— contains list of references to member objects

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 « Lecture 10 w/ prior instructor Steve Marschner « 9

Example

* Add group as a new object type
— lets the data structure reflect the drawing structure
— enables high-level editing by changing just one node

TIQD Tzo‘ ﬁ Tso v TC' 4 TD' v
T7-O Ts°. T9°. TIO'. T|9'. Tzo‘.
T R L . . .

s R el 7l

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 ¢ Lecture 10 w/ prior instructor Steve Marschner ¢ 10

Groups of groups: hierarchies

* This makes the model into a tree
— interior nodes = groups
— leaf nodes = objects
— edges = membership of object in group

* Hierarchies
— Important for modeling and animation
— Models have parts. Parts have convenient coordinate system

— E.g.,, moon around earth, earth (+moon) around sun, sun
around galaxy center, galaxies spinning out in the universe

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 * Lecture 10 w/ prior instructor Steve Marschner * ||

'\
Saturn

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 * Lecture 10 w/ prior instructor Steve Marschner ¢ 12

The Scene Graph (tree)

* Grouping applied hierarchically

* Scene graph: name for various kinds of graph structures
(nodes connected together) used to represent scenes

* Simplest form: tree

— every node has one parent

— leaf nodes are identified
with objects in the scene

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 * Lecture 10 w/ prior instructor Steve Marschner ¢ 13

Concatenation and hierarchy

* Transforms associated with nodes or edges

* Each transform applies to all geometry below it

— want group transform to transform each member
— members already transformed—concatenate

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 * Lecture 10 w/ prior instructor Steve Marschner * 14

Concatenation and hierarchy

* Transforms associated with nodes or edges

* Each transform applies to all geometry below it

— want group transform to transform each member
— members already transformed—concatenate

* Frame transform for object is product of all matrices
along path from root

— each object’s transform describes relationship between its
local coordinates and its group’s coordinates

— frame-to-canonical transform is the result of repeatedly
changing coordinates from group to containing group

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 * Lecture 10 w/ prior instructor Steve Marschner ¢ |5

Large scenes

* Lot of replicated units

* Instancing

— Simple idea: allow an object to be a member of more than
one group at once

— transform different in each case
— leads to linked copies
— single editing operation changes all instances

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 ¢ Lecture 10 w/ Prior instructor Steve Marschner ° 16

Example

* Allow multiple references to nodes
— reflects more of drawing structure
— allows editing of repeated parts in one operation

T|-D Tzo‘ Tae » Tge v Tcew Tpew Tge w Tre w

T7-O Ts°. T9°. TIO'.
ol - . . .

nelll sl

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 ¢ Lecture 10 w/ prior instructor Steve Marschner ¢ |17

The Scene Graph (with instances)

 With instances, there is no more tree

— an object that is instanced multiple
times has more than one parent

* Transform tree becomes DAG
— directed acyclic graph

— group is not allowed to contain
itself, even indirectly

* Transforms still accumulate
along path from root

— now paths from root to leaves
are identified with scene objects

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 ¢ Lecture 10 w/ Prior instructor Steve Marschner ° |18

Implementing a hierarchy

* Obiject-oriented language is convenient

— define shapes and groups as derived from single class

abstract class Shape {
void draw();

}

class Square extends Shape {
void draw() {
// draw unit square

}
}

class Circle extends Shape {
void draw() {
// draw unit circle
}
}

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 * Lecture 10 w/ prior instructor Steve Marschner ¢ 19

Implementing traversal

* Pass a transform down the hierarchy

— before drawing, concatenate

abstract class Shape {
void draw(Transform t_c);

}

class Square extends Shape {
void draw(Transform t_c) {
// draw t_c * unit square

}
}

class Circle extends Shape {
void draw(Transform t_c) {
// draw t_c * unit circle

}
}

Cornell CS4620 Fall 2015 ¢ Lecture 10

class Group extends Shape {
Transform t;
ShapeList members;
void draw(Transform t_c) {
for (m in members) {
m.draw(t_c * t);
}
}
}

© 2015 Kavita Bala

w/ prior instructor Steve Marschner « 20

Basic Scene Graph operations

 Editing a transformation
— good to present usable Ul

* Getting transform of object in canonical (world) frame
— traverse path from root to leaf

* Grouping and ungrouping
— can do these operations without moving anything

— group: insert identity node
— ungroup: remove node, push transform to children

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 * Lecture 10 w/ prior instructor Steve Marschner * 21

Adding more than geometry

* Obijects have properties besides shape
— color, shading parameters

— approximation parameters (e.g. precision of subdividing
curved surfaces into triangles)

— behavior in response to user input

* Setting properties for entire groups is useful

— paint entire window green

* Many systems include some kind of property nodes

— in traversal they are read as, e.g.,"set current color”

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 * Lecture 10 w/ prior instructor Steve Marschner ¢ 22

Scene Graph variations

* Where transforms go
— in every node
— on edges
— in group nodes only

— in special Transform nodes

* Tree vs. DAG
* Nodes for cameras and lights!?

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 ¢ Lecture 10 w/ Prior instructor Steve Marschner ° 23

Hierarchy Example

* Articulated body
* Every object has local frame of reference

T (UA to Tr) T(LA to UA) T (F to LA)

IILA

||F

* Think of applying it to a point
* Think of applying it to the coordinate system IILL

© 2015 Kavita Bala
Cornell CS4620 Fall 2015 * Lecture 10 w/ prior instructor Steve Marschner * 24

In OpenGL

e Have a stack of transforms

* You push and pop transforms on the stack
* glPushMatrix, glMultMatrix, glPopMatrix

* Depth first traversal
* Start with identity
* Push as you go down, pop as you go up

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 * Lecture 10 w/ prior instructor Steve Marschner ¢ 25

Pixar’s Lamp

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 ¢ Lecture 10 w/ Prior instructor Steve Marschner ° 26

Hierarchy

ek >
\

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 * Lecture 10 w/ prior instructor Steve Marschner * 27

Local Coordinate Systems

—

~ McMillan

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 ¢ Lecture 10 w/ PI"iOI" instructor Steve Marschner ° 28

Transforms for Head

— Translate (0O, 0, 2.5)
— Rotate (-120, 0, 1, 0)
— Translate (12, O, 0)
— Rotate (65, 0, 1, 0)
— Translate (12, 0, 0)
— Rotate (30, 0, 1, 0)

———%—McMillan

© 2015 Kavita Bala

Cornell CS4620 Fall 2015 * Lecture 10 w/ prior instructor Steve Marschner ¢ 29

