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Graphics Pipeline 
2D Geometric Transformations

CS 4620 Lecture 8
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Plane projection in drawing
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Plane projection in drawing
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Rasterizing triangles

• Summary
1 evaluation of linear 

functions on pixel  
grid

2 functions defined by  
parameter values  
at vertices

3 using extra 
parameters 
to determine  
fragment set
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Pixel-walk (Pineda) rasterization

• Conservatively 
visit a superset of 
the pixels you want

• Interpolate linear  
functions

• Use those functions 
to determine when  
to emit a fragment
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The z buffer

– another example of a memory-intensive brute force 
approach that works and has become the standard
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APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

Pipeline

7© 2015 Kavita Bala
w/ prior instructor Steve Marschner • 



Cornell CS4620 Fall 2015 • Lecture 8 8© 2015 Kavita Bala
w/ prior instructor Steve Marschner • 



Cornell CS4620 Fall 2015 • Lecture 8

Some demos

• http://mrdoob.github.io/three.js/examples/
• http://carvisualizer.plus360degrees.com/threejs/
• http://madebyevan.com/webgl-water/
• http://akirodic.com/p/jellyfish/
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Pipeline of transformations

• Standard sequence of transforms
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7.1. Viewing Transformations 147
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Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates
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A little quick math background

• Notation for sets, functions, mappings
• Linear transformations
• Matrices

– Matrix-vector multiplication
– Matrix-matrix multiplication

• Geometry of curves in 2D
– Implicit representation
– Explicit representation
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Implicit representations

• Equation to tell whether we are on the curve
 

• Example: line (orthogonal to u, distance k from 0)
 

• Example: circle (center p, radius r)
 

• Always define boundary of region 
– (if f is continuous)
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Explicit representations

• Also called parametric
• Equation to map domain into plane
 

• Example: line (containing p, parallel to u)
 

• Example: circle (center b, radius r)
 

• Like tracing out the path of a particle over time
• Variable t is the “parameter”
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Transforming geometry

 

• Parametric representation:

 

• Implicit representation:
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Translation

• Simplest transformation: 
• Inverse:
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Linear transformations

• One way to define a transformation is by matrix 
multiplication:
 

• Such transformations are linear, which is to say:
 

(and in fact all linear transformations can be written this way)
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Geometry of 2D linear trans.

• 2x2 matrices have simple geometric interpretations
– uniform scale
– non-uniform scale
– rotation
– shear
– reflection

• Reading off the matrix
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Linear transformation gallery

• Uniform scale
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Linear transformation gallery

• Nonuniform scale
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Linear transformation gallery

• Reflection
– can consider it a special case 

of nonuniform scale

20© 2015 Kavita Bala
w/ prior instructor Steve Marschner • 



Cornell CS4620 Fall 2015 • Lecture 8

Linear transformation gallery

• Rotation
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Linear transformation gallery

• Shear
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Composing transformations

• Want to move an object, then move it some more
–  

• We need to represent S o T (“S compose T”)
– and would like to use the same representation as for S and T

• Translation easy
–  

• Translation by uT then by uS is translation by uT + uS

– commutative!
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Composing transformations

• Linear transformations also straightforward
–  

• Transforming first by MT then by MS is the same as 

transforming by MSMT
– only sometimes commutative

• e.g. rotations & uniform scales
• e.g. non-uniform scales w/o rotation

– Note MSMT, or S o T, is T first, then S
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Combining linear with translation

• Need to use both in single framework
• Can represent arbitrary seq. as 

–  

–  

–   

– e. g. 

• Transforming by MT and uT, then by MS and uS, is the 

same as transforming by MSMT and uS + MSuT
– This will work but is a little awkward
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Homogeneous coordinates

• A trick for representing the foregoing more elegantly
• Extra component w for vectors, extra row/column for 

matrices
– for affine, can always keep w = 1

• Represent linear transformations with dummy extra 
row and column
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Homogeneous coordinates

• Represent translation using the extra column
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Homogeneous coordinates

• Composition just works, by 3x3 matrix multiplication

• This is exactly the same as carrying around M and u 
– but cleaner
– and generalizes in useful ways as we’ll see later
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