Graphics Pipeline 2D Geometric Transformations

CS 4620 Lecture 8

Plane projection in drawing

Plane projection in drawing

Rasterizing triangles

- Summar

Pixel-walk (Pineda) rasterization

- Conser visit a sı the pixe
- Interpo functior
- Use thc to detel to emit

The z buffer

- anothe appro:

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

$=$| 5 | 5 | 5 | 5 | 5 | 5 | 5 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 5 | 5 | 5 | 5 | 5 | 0 | 0 |
| 5 | 5 | 5 | 5 | 5 | 0 | 0 | 0 |
| 5 | 5 | 5 | 5 | 0 | 0 | 0 | 0 |
| 5 | 5 | 5 | 0 | 0 | 0 | 0 | 0 |
| 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \mathbf{c}

5	5	5	5	5	5	5	0
5	5	5	5	5	5	0	0
5	5	5	5	5	0	0	0
5	5	5	5	0	0	0	0
5	5	5	0	0	0	0	0
5	5	0	0	0	0	0	0
5	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

$$
=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 5 & 5 & 5 & 5 & 5 & 5 & 5 & 0 \\
\hline 5 & 5 & 5 & 5 & 5 & 5 & 0 & 0 \\
\hline 5 & 5 & 5 & 5 & 5 & 0 & 0 & 0 \\
\hline 5 & 5 & 5 & 5 & 0 & 0 & 0 & 0 \\
\hline 6 & 5 & 5 & 3 & 0 & 0 & 0 & 0 \\
\hline 7 & 6 & 5 & 4 & 3 & 0 & 0 & 0 \\
\hline 8 & 7 & 6 & 5 & 4 & 3 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

[Foley et al.]

three.js - dynamic procedural terrain using 3 d simplex noise
birds by mirada from ro.me - textures by qubodup and davis123 - music by Kevin MacLeod

Some demos

- http://mrdoob.github.io/three.js/examples/
- http://carvisualizer.plus360degrees.com/threejs/
- http://madebyevan.com/webgl-water/
- http://akirodic.com/p/jellyfish/

Pipeline of transformations

- Standard sequence of transforms

A little quick math background

- Notation for sets, functions, mappings
- Linear transformations
- Matrices
- Matrix-vector multiplication
- Matrix-matrix multiplication
- Geometry of curves in 2D
- Implicit representation
- Explicit representation

Implicit representations

- Equation to tell whether we are on the curve

$$
\{\mathbf{v} \mid f(\mathbf{v})=0\}
$$

- Example: line (orthogonal to \mathbf{u}, distance k from $\mathbf{0}$)

$$
\{\mathbf{v} \mid \mathbf{v} \cdot \mathbf{u}+k=0\} \text { (u is a unit vector) }
$$

- Example: circle (center p , radius r)

$$
\left\{\mathbf{v} \mid(\mathbf{v}-\mathbf{p}) \cdot(\mathbf{v}-\mathbf{p})-r^{2}=0\right\}
$$

- Always define boundary of region
- (if f is continuous)

Explicit representations

- Also called parametric
- Equation to map domain into plane

$$
\{f(t) \mid t \in D\}
$$

- Example: line (containing \mathbf{p}, parallel to \mathbf{u})

$$
\{\mathbf{p}+t \mathbf{u} \mid t \in \mathbb{R}\}
$$

- Example: circle (center b, radius r)

$$
\left\{\mathbf{p}+r[\cos t \sin t]^{T} \mid t \in[0,2 \pi)\right\}
$$

- Like tracing out the path of a particle over time
- Variable t is the "parameter"

Transforming geometry

$$
S \rightarrow\{T(\mathbf{v}) \mid \mathbf{v} \in S\}
$$

- Parametric representation:

$$
\{f(t) \mid t \in D\} \rightarrow\{T(f(t)) \mid t \in D\}
$$

- Implicit representation:

$$
\begin{aligned}
& \{\mathbf{v} \mid f(\mathbf{v})=0\} \rightarrow\{T(\mathbf{v}) \mid f(\mathbf{v})=0\} \\
& \quad=\left\{\mathbf{v} \mid f\left(T^{-1}(\mathbf{v})\right)=0\right\}
\end{aligned}
$$

Translation

- Simplest transformation: $T(\mathbf{v})=\mathbf{v}+\mathbf{u}$
- Inverse: $T^{-1}(\mathbf{v})=\mathbf{v}-\mathbf{u}$

Linear transformations

- One way to define a transformation is by matrix multiplication:

$$
T(\mathbf{v})=M \mathbf{v}
$$

- Such transformations are linear, which is to say:

$$
T(a \mathbf{u}+\mathbf{v})=a T(\mathbf{u})+T(\mathbf{v})
$$

(and in fact all linear transformations can be written this way)

Geometry of 2D linear trans.

- 2×2 matrices have simple geometric interpretations
- uniform scale
- non-uniform scale
- rotation
- shear
- reflection
- Reading off the matrix

Linear transformation gallery

- Uniform scale $\left[\begin{array}{ll}s & 0 \\ 0 & s\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}s x \\ s y\end{array}\right]$

(C) 2015 Kavita Bala
w/ prior instructor Steve Marschner •

Linear transformation gallery

- Nonuniform scale $\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}s_{x} x \\ s_{y} y\end{array}\right]$

(C) 2015 Kavita Bala

Linear transformation gallery

- Reflection
- can consider it a special case

Linear transformation gallery

- Rotation $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x \cos \theta-y \sin \theta \\ x \sin \theta+y \cos \theta\end{array}\right]$

$$
\left[\begin{array}{cc}
0.866 & -0.5 \\
0.5 & 0.866
\end{array}\right]
$$

Linear transformation gallery

- Shear $\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x+a y \\ y\end{array}\right]$

(C) 2015 Kavita Bala

Composing transformations

- Want to move an object, then move it some more

$$
-\mathbf{p} \rightarrow T(\mathbf{p}) \rightarrow S(T(\mathbf{p}))=(S \circ T)(\mathbf{p})
$$

- We need to represent S o T ("S compose T")
- and would like to use the same representation as for S and T
- Translation easy

$$
\begin{array}{r}
-T(\mathbf{p})=\mathbf{p}+\mathbf{u}_{T} ; S(\mathbf{p})=\mathbf{p}+\mathbf{u}_{S} \\
(S \circ T)(\mathbf{p})=\mathbf{p}+\left(\mathbf{u}_{T}+\mathbf{u}_{S}\right)
\end{array}
$$

- Translation by \mathbf{u}_{T} then by \mathbf{u}_{S} is translation by $\mathbf{u}_{T}+\mathbf{u}_{S}$
- commutative!

Composing transformations

- Linear transformations also straightforward

$$
\begin{array}{r}
-T(\mathbf{p})=M_{T} \mathbf{p} ; S(\mathbf{p})=M_{S} \mathbf{p} \\
(S \circ T)(\mathbf{p})=M_{S} M_{T} \mathbf{p}
\end{array}
$$

- Transforming first by M_{T} then by M_{S} is the same as transforming by $M_{S} M_{T}$
- only sometimes commutative
- e.g. rotations \& uniform scales
- e.g. non-uniform scales w/o rotation
- Note $M_{S} M_{T}$, or S o T, is T first, then S

Combining linear with translation

- Need to use both in single framework
- Can represent arbitrary seq. as $T(\mathbf{p})=M \mathbf{p}+\mathbf{u}$

$$
\begin{aligned}
& -T(\mathbf{p})=M_{T} \mathbf{p}+\mathbf{u}_{T} \\
& -S(\mathbf{p})=M_{S} \mathbf{p}+\mathbf{u}_{S} \\
& -(S \circ T)(\mathbf{p})=M_{S}\left(M_{T} \mathbf{p}+\mathbf{u}_{T}\right)+\mathbf{u}_{S} \\
& \quad=\left(M_{S} M_{T}\right) \mathbf{p}+\left(M_{S} \mathbf{u}_{T}+\mathbf{u}_{S}\right) \\
& \text { - e.g. } S(T(0))=S\left(\mathbf{u}_{T}\right)
\end{aligned}
$$

- Transforming by M_{T} and \mathbf{u}_{T}, then by M_{S} and \mathbf{u}_{S}, is the same as transforming by $M_{S} M_{T}$ and $u_{S}+M_{S} u_{T}$
- This will work but is a little awkward

Homogeneous coordinates

- A trick for representing the foregoing more elegantly
- Extra component w for vectors, extra row/column for matrices
- for affine, can always keep $w=1$
- Represent linear transformations with dummy extra row and column

$$
\left[\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y \\
c x+d y \\
1
\end{array}\right]
$$

Homogeneous coordinates

- Represent translation using the extra column

$$
\left[\begin{array}{lll}
1 & 0 & t \\
0 & 1 & s \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t \\
y+s \\
1
\end{array}\right]
$$

Homogeneous coordinates

- Composition just works, by 3×3 matrix multiplication

$$
\begin{aligned}
& {\left[\begin{array}{cc}
M_{S} & \mathbf{u}_{S} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
M_{T} & \mathbf{u}_{T} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{p} \\
1
\end{array}\right]} \\
& \quad=\left[\begin{array}{c}
\left(M_{S} M_{T}\right) \mathbf{p}+\left(M_{S} \mathbf{u}_{T}+\mathbf{u}_{S}\right) \\
1
\end{array}\right]
\end{aligned}
$$

- This is exactly the same as carrying around M and u
- but cleaner
- and generalizes in useful ways as we'll see later

