
© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 7

Ray Tracing (Shading)

CS 4620 Lecture 7

1

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Announcements

• A1 grading tonight
– If you haven’t signed up yet, do so immediately.

• A2 is out

2

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Generating eye rays—orthographic

• Just need to compute the view plane point s:

– but where exactly is the view rectangle?

3

s

p = s; d = dv
r(t) = p + td

dv

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Generating eye rays—orthographic

• Positioning the view rectangle
– establish three vectors to be camera basis: u, v, w
– view rectangle is in u–v plane, specified by l, r, t, b
– now ray generation  

is easy:

4

u
e

v

w

ue
w

v

Parallel projection
same direction, different origins

Perspective projection
same origin, different directions

s = e + uu + vv
p = s; d = �w
r(t) = p + td

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Camera: more general

• Orthonormal bases
– viewPoint == e
– viewDir == -w, viewUp == v

• Compute u from the above
• Compute v from u and w

5

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Generating eye rays—perspective

• View rectangle needs to be away from viewpoint
• Distance is important: “focal length” of camera

– still use camera frame but position view rect away from
viewpoint

– ray origin always e
– ray direction now  

controlled by s

6

s

e

 d = s – e

p = e
r(t) = p + td

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Generating eye rays—perspective

• Compute s in the same way; just subtract dw
– coordinates of s are (u, v, –d)

7

u
e

v

w

ue
w

v

Parallel projection
same direction, different origins

Perspective projection
same origin, different directions

s = e + uu + vv � dw
p = e; d = s� e
r(t) = p + td

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Specifying views in Ray 1

8

 <camera type="PerspectiveCamera">
 <viewPoint>10 4.2 6</viewPoint>
 <viewDir>-5 -2.1 -3</viewDir>
 <viewUp>0 1 0</viewUp>
 <projDistance>6</projDistance>
 <viewWidth>4</viewWidth>
 <viewHeight>2.25</viewHeight>
 </camera>

 <camera type="PerspectiveCamera">
 <viewPoint>10 4.2 6</viewPoint>
 <viewDir>-5 -2.1 -3</viewDir>
 <viewUp>0 1 0</viewUp>
 <projDistance>3</projDistance>
 <viewWidth>4</viewWidth>
 <viewHeight>2.25</viewHeight>
 </camera>

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Camera

• Orthonormal bases
– viewPoint == e
– viewDir == -w, viewUp == v

• Compute u from the above

l = -viewWidth/2

r = +viewWidth/2

n_x = imageWidth

9

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Where are the pixels located?

10

✐

✐

✐

✐

✐

✐

✐

✐

58 3. Raster Images

Figure 3.10. Coordinates of a four pixel by three pixel screen. Note that in some APIs the
y-axis will point downwards.

Again, these coordinates are simply conventions, but they will be important

to remember later when implementing cameras and viewing transformations.

3.2.1 Pixel Values

So far we have described the values of pixels in terms of real numbers, represent-

ing intensity (possibly separately for red, green, and blue) at a point in the image.

This suggests that images should be arrays of floating-point numbers, with either

one (for grayscale, or black and white, images) or three (for RGB color images)

32-bit floating point numbers stored per pixel. This format is sometimes used,

when its precision and range of values are needed, but images have a lot of pix-

els and memory and bandwidth for storing and transmitting images are invariably

scarce. Just one ten-megapixel photograph would consume about 115 MB of

RAM in this format.Why 115 MB and not 120
MB?

Less range is required for images that are meant to be displayed directly.

While the range of possible light intensities is unbounded in principle, any given

device has a decidedly finite maximum intensity, so in many contexts it is per-

fectly sufficient for pixels to have a bounded range, usually taken to be [0, 1] for
simplicity. For instance, the possible values in an 8-bit image are 0, 1/255, 2/255, . . . , 254/255, 1.The denominator of 255,

rather than 256, is
awkward, but being able to
represent 0 and 1 exactly is
important.

Images stored with floating point numbers, allowing a wide range of values, are

often called high dynamic range (HDR) images to distinguish them from fixed-

range, or low dynamic range (LDR) images that are stored with integers. See

✐

✐

✐

✐

✐

✐

✐

✐

4.4. Orthographic views 73

u

e

v

w

ue
w

v

Parallel projection
same direction, different origins

Perspective projection
same origin, different directions

Figure 4.8. Ray generation using the camera frame. Left: in an orthographic view, the rays

start at the pixels’ locations on the image plane, and all share the same direction, which is

equal to the view direction. Right: in a perspective view, the rays start at the viewpoint, and

each ray’s direction is defined by the line through the viewpoint, e, and the pixel’s location on

the image plane.

of the image, as measured from e along the v direction. Usually l < 0 < r and
b < 0 < t. (See Figure 4.8.) Many systems assume

l = −r and b = −t so
that a width and height

suffice.

In Section 3.2 we discussed pixel coordinates in an image. To fit an image

with nx × ny pixels into a rectangle of size (r − l) × (t − b), the pixels are
spaced a distance (r − l)/nx apart horizontally and (t − b)/ny apart vertically,

with a half-pixel space around the edge to center the pixel grid within the image

rectangle. This means that the pixel at position (i, j) in the raster image has the
position

u = l + (r − l)(i + 0.5)/nx

v = b + (t − b)(j + 0.5)/ny

(4.1)

where (u, v) are the coordinates of the pixel’s position on the image plane, mea-
sured with respect to the origin e and the basis {u,v}. With l and r both

specified, there is

redundancy: moving the

viewpoint a bit to the right

and correspondingly

decreasing l and r will not

change the view (and

similarly on the v axis).

In an orthographic view we can simply use the pixel’s image-plane posi-

tion as the ray’s starting point, and we already know the ray’s direction is the

view direction. The procedure for generating orthographic viewing rays is then:

compute u and v using (4.1)
ray.direction← −w

ray.origin← e + uu + v v

It’s very simple to make an oblique parallel view: just allow the image plane

normal, w, to be specified separately from the view direction; the procedure is

otherwise exactly the same.

j

i

i =
 –

2

i =
 +

2

j = 1.5

j = –1.5

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Ray Tracing: shading

11

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Image so far

• With eye ray generation and scene intersection
for 0 <= iy < ny
 for 0 <= ix < nx {
 ray = camera.getRay(ix, iy);
 c = scene.trace(ray, 0, +inf);
 image.set(ix, iy, c);
 }

…

Scene.trace(ray, tMin, tMax) {
 bool didhit = surfs.intersect(hit,ray, tMin, tMax);
 if (didhit) return hit.surface.color();
 else return black;
}

12

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Shading

• Compute light reflected toward camera
• Inputs:

– eye direction
– light direction  

(for each of many lights)
– surface normal
– surface parameters  

(color, shininess, …)

13

v
l n

• Light is scattered uniformly in all directions
– the surface color is the same for all viewing directions

• Lambert’s cosine law

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Diffuse reflection

Top face of cube 
receives a certain  
amount of light

Top face of  
60º rotated cube 

intercepts half the light

In general, light per unit  
area is proportional to 

cos θ = l • n

l n

14

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

r
intensity  
here: I/r2

I

1

intensity  
here:

Light falloff

15

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Lambertian shading

• Shading independent of view direction

diffuse 
coefficient

diffusely 
reflected 

light

illumination  
from source

v
l n

16

Ld = kd (I/r
2
)max(0,n · l)

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Lambertian shading

• Produces matte appearance

[F
ol

ey
 e

t
al

.]

kd

17

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Diffuse shading

18

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Image so far

Scene.trace(Ray ray, tMin, tMax) {
 bool didhit = intersect(hit, ray, tMin, tMax);
 if didhit {
 point = ray.evaluate(hit.t);
 normal = hit.surface.getNormal(point);
 return hit.surface.shade(ray, point, 
 normal, light);
 }
 else return backgroundColor;
}

…

Surface.shade(ray, point, normal, light) {
 v = –normalize(ray.direction);
 l = normalize(light.pos – point);
 // compute shading
}

19

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Shadows

• Surface is only illuminated if nothing blocks its view of
the light.

• With ray tracing it’s easy to check
– just intersect a ray with the scene!

20

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Image so far

Surface.shade(ray, point, normal, light) {
 shadRay = (point, light.pos – point);
 if (shadRay not blocked) {
 v = –normalize(ray.direction);
 l = normalize(light.pos – point);
 // compute shading
 }
 return black;
}

21

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Shadow rounding errors

• Don’t fall victim to one of the classic blunders:

• What’s going on?
– hint: at what t does shadow ray intersect the surface?

22

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Shadow rounding errors

• Solution: shadow rays start a tiny distance from the
surface

23

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Multiple lights

• Important to fill in black shadows
• Just loop over lights, add contributions
• Ambient shading

– black shadows are not really right
– one solution: dim light at camera
– alternative: add a constant “ambient” color to the shading…

24

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Image so far

shade(ray, point, normal, lights) {
 result = ambient;
 for light in lights {
 if (shadow ray not blocked) {
 result += shading contribution;
 }
 }
 return result;
}

25

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Specular shading (Blinn-Phong)

• Intensity depends on view direction
– bright near mirror configuration

v
l n

26

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Specular shading (Blinn-Phong)

• Close to mirror ⇔ half vector near normal
– Measure “near” by dot product of unit vectors

specular 
coefficient

specularly 
reflected 

light

n
v

hl

27

h = bisector(v, l)

=
v + l
�v + l�

Ls = ks (I/r
2
)max(0, cos↵)p

= ks (I/r
2
)max(0,n · h)p

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Phong model—plots

• Increasing p narrows the lobe

[F
ol

ey
 e

t
al

.]

28

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Specular shading

• Blinn-Phong

[F
ol

ey
 e

t
al

.]

29

ks

p

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Diffuse + Phong shading

30

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Ambient shading

• Shading that does not depend on anything
– add constant color to account for disregarded illumination

and fill in black shadows

ambient  
coefficient

reflected 
ambient  

light 31

La = ka Ia

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Putting it together

• Usually include ambient, diffuse, Phong in one model

• The final result is the sum over many lights

32

L = La + Ld + Ls

= ka Ia + kd (I/r
2
)max(0,n · l) + ks (I/r

2
)max(0,n · h)p

L = La +

NX

i=1

[(Ld)i + (Ls)i]

L = ka Ia +
NX

i=1

⇥
kd (Ii/r

2
i)max(0,n · li) +

ks (Ii/r
2
i)max(0,n · hi)

p
⇤

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Examples

33

