
© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Ray Tracing (Intersection)

CS 4620 Lecture 6

1

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Announcements

• A1 is done
– Demo slots on Monday evening. Sign up.

• A2 will be out today

• Updated office hours in a calendar to make sure we
are all synced up

2

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Image so far

• With sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
 for 0 <= ix < nx {
 ray = camera.getRay(ix, iy);
 bool didhit = s.intersect(ray, 0, +inf)
 if didhit
 image.set(ix, iy, white);
 }

3

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces

4

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Ray-triangle intersection

• Condition 1: point is on ray

• Condition 2: point is on plane

• Condition 3: point is on the inside of all three edges
• First solve 1&2 (ray–plane intersection)

– substitute and solve for t:

5

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Deciding about insideness

• Need to check whether hit point is inside 3 edges
– easiest to do in 2D coordinates on the plane

• Will also need to know where we are in the triangle
– for textures, shading, etc. … next couple of lectures

• Efficient solution: transform to coordinates aligned to
the triangle

6

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Barycentric coordinates

• A coordinate system for triangles
– algebraic viewpoint:

– geometric viewpoint (areas):

• Triangle interior test:

[S
hi

rle
y

20
00

]

7

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Barycentric coordinates

• Linear viewpoint: basis for the plane

– in this view, the triangle interior test is just

[S
hi

rle
y

20
00

]

8

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Barycentric ray-triangle intersection

• Every point on the plane can be written in the form:  
 
 
for some numbers β and .

• If the point is also on the ray then it is  
 
 
for some number t.

• Set them equal: 3 linear equations in 3 variables  
 
 
…solve them to get t, β, and all at once!

9

p+ td

a+ �(b� a) + �(c� a)

p+ td = a+ �(b� a) + �(c� a)

�

�

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

p+ td = a+ �(b� a) + �(c� a)

�(a� b) + �(a� c) + td = a� p

⇥
a� b a� c d

⇤
2

4
�

�

t

3

5 =
⇥
a� p

⇤

2

4
xa � xb xa � xc xd

ya � yb ya � yc yd

za � zb za � zc zd

3

5

2

4
�

�

t

3

5 =

2

4
xa � xp

ya � yp

za � zp

3

5

Barycentric ray-triangle intersection

10

Cramer’s rule is a good fast way to solve this system
(see text Ch. 2 and Ch. 4 for details)

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Ray intersection in software

• All surfaces need to be able to intersect rays with
themselves.

11

class Surface {
 …

abstract boolean intersect(IntersectionRecord result, Ray r);
}

was there an 
intersection? information about 

first intersection

ray to be  
intersected

class IntersectionRecord {
 float t;
 Vector3 hitLocation;
 Vector3 normal;
 …
}

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Image so far

• With eye ray generation and sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
 for 0 <= ix < nx {
 ray = camera.getRay(ix, iy);
 bool didhit = s.intersect(hit, ray)
 if didhit
 image.set(ix, iy, white);
 }

12

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Ray intersection in software

• Scenes usually have many objects
• Need to find the first intersection along the ray

– that is, the one with the smallest positive t value

• Loop over objects
– ignore those that don’t intersect
– keep track of the closest seen so far
– Convenient to give rays an ending 

t value for this purpose (then  
they are really segments)

13

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Intersection against many shapes

intersect (ray, tMin, tMax) {
 tBest = +inf; firstSurface = null;
 for surface in surfaceList {
 bool didhit = surface.intersect(hit, ray, tMin, tBest);
 if didhit {
 tBest = hit.t;
 firstSurface = hit.Surface;
 }
 }
return firstSurface, tBest;
}

• The basic idea is:

– this is linear in the number of shapes  
but there are sublinear methods (acceleration structures)

14

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Generating eye rays—planar projection

• Ray origin (varying): pixel position on viewing window
• Ray direction (constant): view direction

15

viewing ray

viewing
window

pixel
position

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Generating eye rays—perspective

• Ray origin (constant): viewpoint
• Ray direction (varying): toward pixel position on

viewing window

16

viewing ray

pixel
position

viewing
window

viewpoint

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Software interface for cameras

• Key operation: generate ray for image position

• Modularity problem: Camera shouldn’t have to worry
about image resolution
– better solution: normalized coordinates

17

class Camera {
 …

Ray generateRay(int col, int row);
}

class Camera {
 …

Ray generateRay(float u, float v);
}

args go from 0, 0 
to width – 1, height – 1

args go from 0, 0 to 1, 1

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Specifying views in Ray 1

18

 <camera type="OrthographicCamera">
 <viewPoint>10 4.2 6</viewPoint>
 <viewDir>-5 -2.1 -3</viewDir>
 <viewUp>0 1 0</viewUp>
 <viewWidth>4</viewWidth>
 <viewHeight>2.25</viewHeight>
 </camera>

 <camera type="PerspectiveCamera">
 <viewPoint>10 4.2 6</viewPoint>
 <viewDir>-5 -2.1 -3</viewDir>
 <viewUp>0 1 0</viewUp>
 <projDistance>6</projDistance>
 <viewWidth>4</viewWidth>
 <viewHeight>2.25</viewHeight>
 </camera>

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Generating eye rays—orthographic

• Just need to compute the view plane point s:

– but where exactly is the view rectangle?

19

s

p = s; d = dv
r(t) = p + td

dv

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Generating eye rays—orthographic

• Positioning the view rectangle
– establish three vectors to be camera basis: u, v, w
– view rectangle is in u–v plane, specified by l, r, t, b
– now ray generation  

is easy:

20

u
e

v

w

ue
w

v

Parallel projection
same direction, different origins

Perspective projection
same origin, different directions

s = e + uu + vv
p = s; d = �w
r(t) = p + td

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Camera

• Orthonormal bases
– viewPoint == e
– viewDir == -w, viewUp == v

• Compute u from the above

21

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Generating eye rays—perspective

• View rectangle needs to be away from viewpoint
• Distance is important: “focal length” of camera

– still use camera frame but position view rect away from
viewpoint

– ray origin always e
– ray direction now  

controlled by s

22

s

e

 d = s – e

p = e
r(t) = p + td

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Generating eye rays—perspective

• Compute s in the same way; just subtract dw
– coordinates of s are (u, v, –d)

23

u
e

v

w

ue
w

v

Parallel projection
same direction, different origins

Perspective projection
same origin, different directions

s = e + uu + vv � dw
p = e; d = s� e
r(t) = p + td

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Specifying views in Ray 1

24

 <camera type="PerspectiveCamera">
 <viewPoint>10 4.2 6</viewPoint>
 <viewDir>-5 -2.1 -3</viewDir>
 <viewUp>0 1 0</viewUp>
 <projDistance>6</projDistance>
 <viewWidth>4</viewWidth>
 <viewHeight>2.25</viewHeight>
 </camera>

 <camera type="PerspectiveCamera">
 <viewPoint>10 4.2 6</viewPoint>
 <viewDir>-5 -2.1 -3</viewDir>
 <viewUp>0 1 0</viewUp>
 <projDistance>3</projDistance>
 <viewWidth>4</viewWidth>
 <viewHeight>2.25</viewHeight>
 </camera>

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Camera

• Orthonormal bases
– viewPoint == e
– viewDir == -w, viewUp == v

• Compute u from the above

l = -viewWidth/2

r = +viewWidth/2

n_x = imageWidth

25

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 6

Where are the pixels located?

26

✐

✐

✐

✐

✐

✐

✐

✐

58 3. Raster Images

Figure 3.10. Coordinates of a four pixel by three pixel screen. Note that in some APIs the
y-axis will point downwards.

Again, these coordinates are simply conventions, but they will be important

to remember later when implementing cameras and viewing transformations.

3.2.1 Pixel Values

So far we have described the values of pixels in terms of real numbers, represent-

ing intensity (possibly separately for red, green, and blue) at a point in the image.

This suggests that images should be arrays of floating-point numbers, with either

one (for grayscale, or black and white, images) or three (for RGB color images)

32-bit floating point numbers stored per pixel. This format is sometimes used,

when its precision and range of values are needed, but images have a lot of pix-

els and memory and bandwidth for storing and transmitting images are invariably

scarce. Just one ten-megapixel photograph would consume about 115 MB of

RAM in this format.Why 115 MB and not 120
MB?

Less range is required for images that are meant to be displayed directly.

While the range of possible light intensities is unbounded in principle, any given

device has a decidedly finite maximum intensity, so in many contexts it is per-

fectly sufficient for pixels to have a bounded range, usually taken to be [0, 1] for
simplicity. For instance, the possible values in an 8-bit image are 0, 1/255, 2/255, . . . , 254/255, 1.The denominator of 255,

rather than 256, is
awkward, but being able to
represent 0 and 1 exactly is
important.

Images stored with floating point numbers, allowing a wide range of values, are

often called high dynamic range (HDR) images to distinguish them from fixed-

range, or low dynamic range (LDR) images that are stored with integers. See

✐

✐

✐

✐

✐

✐

✐

✐

4.4. Orthographic views 73

u

e

v

w

ue
w

v

Parallel projection
same direction, different origins

Perspective projection
same origin, different directions

Figure 4.8. Ray generation using the camera frame. Left: in an orthographic view, the rays

start at the pixels’ locations on the image plane, and all share the same direction, which is

equal to the view direction. Right: in a perspective view, the rays start at the viewpoint, and

each ray’s direction is defined by the line through the viewpoint, e, and the pixel’s location on

the image plane.

of the image, as measured from e along the v direction. Usually l < 0 < r and
b < 0 < t. (See Figure 4.8.) Many systems assume

l = −r and b = −t so
that a width and height

suffice.

In Section 3.2 we discussed pixel coordinates in an image. To fit an image

with nx × ny pixels into a rectangle of size (r − l) × (t − b), the pixels are
spaced a distance (r − l)/nx apart horizontally and (t − b)/ny apart vertically,

with a half-pixel space around the edge to center the pixel grid within the image

rectangle. This means that the pixel at position (i, j) in the raster image has the
position

u = l + (r − l)(i + 0.5)/nx

v = b + (t − b)(j + 0.5)/ny

(4.1)

where (u, v) are the coordinates of the pixel’s position on the image plane, mea-
sured with respect to the origin e and the basis {u,v}. With l and r both

specified, there is

redundancy: moving the

viewpoint a bit to the right

and correspondingly

decreasing l and r will not

change the view (and

similarly on the v axis).

In an orthographic view we can simply use the pixel’s image-plane posi-

tion as the ray’s starting point, and we already know the ray’s direction is the

view direction. The procedure for generating orthographic viewing rays is then:

compute u and v using (4.1)
ray.direction← −w

ray.origin← e + uu + v v

It’s very simple to make an oblique parallel view: just allow the image plane

normal, w, to be specified separately from the view direction; the procedure is

otherwise exactly the same.

j

i

i =
 –

2

i =
 +

2

j = 1.5

j = –1.5

