Ray Tracing (Intersection)

CS 4620 Lecture 6

Announcements

- Al is done
- Demo slots on Monday evening. Sign up.
- A2 will be out today
- Updated office hours in a calendar to make sure we are all synced up

Image so far

- With sphere intersection

```
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0<= iy < ny
    for 0<= ix < nx {
    ray = camera.getRay(ix, iy);
    bool didhit = s.intersect(ray, 0, +inf)
    if didhit
        image.set(ix, iy, white);
    }
```

 (with previous instructor Marschner)

Ray-triangle intersection

- In plane, triangle is the intersection of 3 half spaces

© 2015 Kavita Bala•

Ray-triangle intersection

- Condition I: point is on ray

$$
\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}
$$

- Condition 2: point is on plane

$$
(\mathbf{x}-\mathbf{a}) \cdot \mathbf{n}=0
$$

- Condition 3: point is on the inside of all three edges
- First solve I\&2 (ray-plane intersection)
- substitute and solve for t :

$$
\begin{array}{r}
(\mathbf{p}+t \mathbf{d}-\mathbf{a}) \cdot \mathbf{n}=0 \\
t=\frac{(\mathbf{a}-\mathbf{p}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}
\end{array}
$$

Deciding about insideness

- Need to check whether hit point is inside 3 edges
- easiest to do in 2D coordinates on the plane
- Will also need to know where we are in the triangle
- for textures, shading, etc. ... next couple of lectures
- Efficient solution: transform to coordinates aligned to the triangle

Barycentric coordinates

- A coordinate system for triangles
- algebraic viewpoint:

$$
\begin{aligned}
& \mathbf{p}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c} \\
& \alpha+\beta+\gamma=1
\end{aligned}
$$

- geometric viewpoint (areas):
- Triangle interior test:

$$
\alpha>0 ; \quad \beta>0 ; \quad \gamma>0
$$

© 2015 Kavita Bala •
7

Barycentric coordinates

$$
\begin{aligned}
& \alpha=1-\beta-\gamma \\
& \mathbf{p}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
\end{aligned}
$$

- Linear viewpoint: basis for the plane

- in this view, the triangle interior test is just

$$
\beta>0 ; \quad \gamma>0 ; \quad \beta+\gamma<1
$$

Barycentric ray-triangle intersection

- Every point on the plane can be written in the form:

$$
\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
$$

for some numbers β and γ.

- If the point is also on the ray then it is

$$
\mathbf{p}+t \mathbf{d}
$$

for some number t.

- Set them equal: 3 linear equations in 3 variables

$$
\mathbf{p}+t \mathbf{d}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
$$

\ldots...solve them to get t, β, and γ all at once!
© 2015 Kavita Bala •

Barycentric ray-triangle intersection

$$
\begin{aligned}
\mathbf{p}+t \mathbf{d} & =\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a}) \\
\beta(\mathbf{a}-\mathbf{b})+\gamma(\mathbf{a}-\mathbf{c})+t \mathbf{d} & =\mathbf{a}-\mathbf{p} \\
{\left[\begin{array}{lll}
\mathbf{a}-\mathbf{b} & \mathbf{a}-\mathbf{c} & \mathbf{d}
\end{array}\right]\left[\begin{array}{l}
\beta \\
\gamma \\
t
\end{array}\right] } & =[\mathbf{a}-\mathbf{p}] \\
{\left[\begin{array}{lll}
x_{a}-x_{b} & x_{a}-x_{c} & x_{d} \\
y_{a}-y_{b} & y_{a}-y_{c} & y_{d} \\
z_{a}-z_{b} & z_{a}-z_{c} & z_{d}
\end{array}\right]\left[\begin{array}{l}
\beta \\
\gamma \\
t
\end{array}\right] } & =\left[\begin{array}{l}
x_{a}-x_{p} \\
y_{a}-y_{p} \\
z_{a}-z_{p}
\end{array}\right]
\end{aligned}
$$

Cramer's rule is a good fast way to solve this system (see text Ch. 2 and Ch. 4 for details)

Ray intersection in software

- All surfaces need to be able to intersect rays with themselves.

© 2015 Kavita Bala • II (with previous instructor Marschner)

Image so far

- With eye ray generation and sphere intersection

```
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0<= iy < ny
    for 0<= ix < nx {
    ray = camera.getRay(ix, iy);
    bool didhit = s.intersect(hit, ray)
    if didhit
        image.set(ix, iy, white);
    }
```


Ray intersection in software

- Scenes usually have many objects
- Need to find the first intersection along the ray
- that is, the one with the smallest positive t value
- Loop over objects
- ignore those that don't intersect
- keep track of the closest seen so far
- Convenient to give rays an ending t value for this purpose (then they are really segments)
© 2015 Kavita Bala • 13 (with previous instructor Marschner)

Intersection against many shapes

- The basic idea is:

```
intersect (ray, tMin, tMax) {
    tBest = +inf; firstSurface = null;
    for surface in surfaceList {
        bool didhit = surface.intersect(hit, ray, tMin, tBest);
        if didhit {
            tBest = hit.t;
            firstSurface = hit.Surface;
            }
    }
return firstSurface, tBest;
}
```

- this is linear in the number of shapes but there are sublinear methods (acceleration structures)

Generating eye rays-planar projection

- Ray origin (varying): pixel position on viewing window
- Ray direction (constant): view direction

Generating eye rays-perspective

- Ray origin (constant): viewpoint
- Ray direction (varying): toward pixel position on viewing window

© 2015 Kavita Bala •

Software interface for cameras

- Key operation: generate ray for image position

```
class Camera {
    ...
}
to width - I, height - I
```

- Modularity problem: Camera shouldn't have to worry about image resolution
- better solution: normalized coordinates

```
class Camera {
    Ray generateRay(float u, float v); \longleftarrow args go from 0,0 to I, I
```

\}
© 2015 Kavita Bala •

Specifying views in Ray I

```
<camera type="OrthographicCamera">
    <viewPoint>10 4.2 6</viewPoint>
    <viewDir>-5 -2.1-3</viewDir>
    <viewUp>0 l 0</viewUp>
    <viewWidth>4</viewWidth>
    <viewHeight>2.25</viewHeight>
</camera>
<camera type="PerspectiveCamera">
    <viewPoint>10 4.2 6</viewPoint>
    <viewDir>-5 -2.1-3</viewDir>
    <viewUp>0 l 0</viewUp>
    <projDistance>6</projDistance>
    <viewWidth>4</viewWidth>
    <viewHeight>2.25</viewHeight>
</camera>
```


© 2015 Kavita Bala •

Generating eye rays-orthographic

- Just need to compute the view plane point s:

- but where exactly is the view rectangle?
© 2015 Kavita Bala • 19

Generating eye rays-orthographic

- Positioning the view rectangle
- establish three vectors to be camera basis: $\mathbf{u}, \mathbf{v}, \mathbf{w}$
- view rectangle is in $\mathbf{u}-\mathrm{v}$ plane, specified by $\mathrm{I}, \mathrm{r}, \mathrm{t}, \mathrm{b}$
- now ray generation is easy:

$$
\begin{aligned}
& \mathbf{s}=\mathbf{e}+u \mathbf{u}+v \mathbf{v} \\
& \mathbf{p}=\mathbf{s} ; \mathbf{d}=-\mathbf{w} \\
& \mathbf{r}(t)=\mathbf{p}+t \mathbf{d}
\end{aligned}
$$

© 2015 Kavita Bala • 20
(with previous instructor Marschner)

Camera

- Orthonormal bases
- viewPoint == e
- viewDir $==-w$, viewUp $==v$
- Compute u from the above
© 2015 Kavita Bala •
21

Generating eye rays-perspective

- View rectangle needs to be away from viewpoint
- Distance is important:"focal length" of camera
- still use camera frame but position view rect away from viewpoint
- ray origin always e
- ray direction now controlled by s

Generating eye rays-perspective

- Compute s in the same way; just subtract $d \mathbf{w}$
- coordinates of s are ($u, v,-d$)

$$
\begin{aligned}
& \mathbf{s}=\mathbf{e}+u \mathbf{u}+v \mathbf{v}-d \mathbf{w} \\
& \mathbf{p}=\mathbf{e} ; \mathbf{d}=\mathbf{s}-\mathbf{e} \\
& \mathbf{r}(t)=\mathbf{p}+t \mathbf{d}
\end{aligned}
$$

© 2015 Kavita Bala • 23 (with previous instructor Marschner)

Specifying views in Ray I

```
<camera type="PerspectiveCamera">
    <viewPoint>10 4.2 6</viewPoint>
    <viewDir>-5-2.1-3</viewDir>
    <viewUp>0 l 0</viewUp>
    <projDistance>6</projDistance>
    <viewWidth>4</viewWidth>
    <viewHeight>2.25</viewHeight>
</camera>
<camera type="PerspectiveCamera">
    <viewPoint>10 4.2 6</viewPoint>
    <viewDir>-5 -2.1-3</viewDir>
    <viewUp>0 l 0</viewUp>
    <projDistance>3</projDistance>
    <viewWidth>4</viewWidth>
    <viewHeight>2.25</viewHeight>
</camera>
```


Camera

- Orthonormal bases
- viewPoint == e
- viewDir $==-w$, viewUp $==v$
- Compute u from the above

I = -viewWidth/2
$r=+v i e w W i d t h / 2$
n_x = imageWidth

© 2015 Kavita Bala •

Where are the pixels located?

$$
\begin{aligned}
& u=l+(r-l)(i+0.5) / n_{x} \\
& v=b+(t-b)(j+0.5) / n_{y}
\end{aligned}
$$

