Ray Tracing (Intersection)

CS 4620 Lecture 6

© 2015 Kavita Bala* |

Cornell C54620 Fall 2015 - Lecture 6 (with previous instructor Marschner)

Anhnouncements

e Al is done

— Demo slots on Monday evening. Sign up.
* A2 will be out today

* Updated office hours in a calendar to make sure we
are all synced up

© 2015 Kavita Bala ¢ 2

Cornell C54620 Fall 2015 » Lecture 6 (with previous instructor Marschner)

Image so far

* With sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <=iy <ny
for 0 <=ix <nx {
ray = camera.getRay(ix, iy);
bool didhit = s.intersect(ray, O, +inf)
if didhit
image.set(ix, iy, white);

Cornell CS4620 Fall 2015 « Lecture 6

© 2015 Kavita Bala ¢
(with previous instructor Marschner)

3

Ray-triangle intersection

* In plane, triangle is the intersection of 3 half spaces

© 2015 Kavita Bala » 4

Cornell C54620 Fall 2015 « Lecture 6 (with previous instructor Marschner)

Ray-triangle intersection

Condition |: point is on ray
r(t) =p+td

Condition 2: point is on plane

(x—a)-n=0

Condition 3: point is on the inside of all three edges

First solve 1&2 (ray—plane intersection)
— substitute and solve for t:
(p+td—a) - n=0

(a—p)-n

f —
d n

© 2015 Kavita Bala * 2

Cornell C54620 Fall 2015 » Lecture 6 (with previous instructor Marschner)

Deciding about insideness

* Need to check whether hit point is inside 3 edges
— easiest to do in 2D coordinates on the plane

* Will also need to know where we are in the triangle
— for textures, shading, etc. ... next couple of lectures

* Efficient solution: transform to coordinates aligned to
the triangle

i « 6
Cornell CS4620 Fall 2015 * Lecture 6 _ - ©2015 Kavita Bala
(with previous instructor Marschner)

Barycentric coordinates

* A coordinate system for triangles
— algebraic viewpoint:
p=aa+ b+ ~c
a+B8+v=1
— geometric viewpoint (areas):\ ¢
* Triangle interior test: (oL B.Y)
a=E B0 w3l

[Shirley 2000]

b

i . 7
Cornell CS4620 Fall 2015 * Lecture 6 _ - ©2015 Kavita Bala
(with previous instructor Marschner)

a=1—-0—7

Barycentric coordinates 5 BBl (—8)

* Linear viewpoint: basis for the plane

-~
|

<

Q;

-
-

t’-_“

[Shirley 2000]

B=g

— in this view, the triangle interior test is just

8>0, >0, B+v<]1

© 2015 Kavita Bala * 8

Cornell C54620 Fall 2015 » Lecture 6 (with previous instructor Marschner)

Barycentric ray-triangle intersection

* Every point on the plane can be written in the form:
a+p(b—a)+r(c—a)

for some numbers 5 and 7.

* If the point is also on the ray then it is
p + td

for some number .

* Set them equal: 3 linear equations in 3 variables
p+id=a+p(b-a)+y(c—a)

...solve them to get t, 5, and ~yall at once!

© 2015 Kavita Bala = 9

Cornell C54620 Fall 2015 » Lecture 6 (with previous instructor Marschner)

Barycentric ray-triangle intersection

p+td=a+ S(b—a)+~v(c—a)
fla—b)+y(a—-c)+td=a—p

[a—b a—c d} Y :[a—p}
t
(X0 —Tpb Toq—Te Tql| [B) (x, — asp_
Ya — Yb Ya — Yc Yd Y1 = [Ya — Yp
| Za — 2 Ra— % 24| | T | Za — Zp |

Cramer’s rule is a good fast way to solve this system
(see text Ch. 2 and Ch. 4 for details)

© 2015 Kavita Bala * 10

Cornell C54620 Fall 2015 » Lecture 6 (with previous instructor Marschner)

Ray intersection in software

* All surfaces need to be able to intersect rays with

themselves.
ray to be

class Surface { intersected

abstract boolean intersect(IntersectionRecord result, Ray r);

-/

was there an

- : : : class IntersectionRecord
intersection? information about foat t: {
first intersection Vector3 hitLocation;

Vectord normal;

}

© 2015 Kavita Bala * !!

Cornell C54620 Fall 2015 « Lecture 6 (with previous instructor Marschner)

Image so far

* With eye ray generation and sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <=iy <ny
for 0 <=ix <nx {
ray = camera.getRay(ix, iy);
bool didhit = s.intersect(hit, ray)
if didhit
image.set(ix, iy, white);

© 2015 Kavita Bala * 12

Cornell C54620 Fall 2015 « Lecture 6 (with previous instructor Marschner)

Ray intersection in software

* Scenes usually have many objects
* Need to find the first intersection along the ray

— that is, the one with the smallest positive 7 value

* Loop over objects
— ignore those that don’t intersect
— keep track of the closest seen so far

— Convenient to give rays an ending
t value for this purpose (then
they are really segments)

© 2015 Kavita Bala * 13

Cornell C54620 Fall 2015 » Lecture 6 (with previous instructor Marschner)

Intersection against many shapes

* The basic idea is:

intersect (ray, tMin, tMax) {
tBest = +inf; firstSurface = null;
for surface in surfaceList {
bool didhit = surface.intersect(hit, ray, tMin, tBest);
if didhit {
tBest = hit.t;
firstSurface = hit.Surface;

J

return firstSurface, tBest;

}

— this is linear in the number of shapes
but there are sublinear methods (acceleration structures)

© 2015 Kavita Bala « 14

Cornell C54620 Fall 2015 » Lecture 6 (with previous instructor Marschner)

Generating eye rays—planar projection

* Ray origin (varying): pixel position on viewing window
* Ray direction (constant): view direction

viewing
window

pixel
position viewing ray

© 2015 Kavita Bala » 15

Cornell C54620 Fall 2015 » Lecture 6 (with previous instructor Marschner)

Generating eye rays—perspective

* Ray origin (constant): viewpoint
* Ray direction (varying): toward pixel position on
viewing window

viewing
window

viewpoint

pixel
position

viewing ray

© 2015 Kavita Bala * 16

Cornell C54620 Fall 2015 » Lecture 6 (with previous instructor Marschner)

Software interface for cameras

* Key operation: generate ray for image position

class Camera {

Ray generateRay(int col, int row); «— o &> &9 from 0, O
} to width — |, height — |

* Modularity problem: Camera shouldn’t have to worry

about image resolution

— better solution: normalized coordinates

class Camera {

Ray generateRay(float u, float v); «—— args go from 0,0 to I, |

}

i . 17
Cornell CS4620 Fall 2015 * Lecture 6 © 2015 Kavita Bala

(with previous instructor Marschner)

Specifying views in Ray |

<camera type="0rthographicCamera">
<viewPoint>10 4.2 6</viewPoint>
<viewDir>-5 -2.1 -3</viewDir>
<viewUp>0 1 0</viewUp>
<viewWidth>4</viewWidth>
<viewHeight>2.25</viewHeight>
</camera>

<camera type="PerspectiveCamera">
<viewPoint>10 4.2 6</viewPoint>
<viewDir>-5 -8.1 -8</viewDir>
<viewUp>0 1 0</viewUp>
<projDistance>6</projDistance>
<viewWidth>4</viewWidth>
<viewHeight>2.25</viewHeight>

</camera>

Cornell CS4620 Fall 2015 ¢« Lecture 6

© 2015 Kavita Bala ¢
(with previous instructor Marschner)

18

Generating eye rays—orthographic

* Just need to compute the view plane point s:

S

p=s;d=d,
r(t)=p+ud

— but where exactly is the view rectangle?

© 2015 Kavita Bala * 19

Cornell C54620 Fall 2015 » Lecture 6 (with previous instructor Marschner)

Generating eye rays—orthographic

* Positioning the view rectangle
— establish three vectors to be camera basis: u, v, w

— view rectangle is in u—v plane, specified by I, , t, b

~

— NOW ray generation I
is easy: N

S=e+uu-+ovv

© 2015 Kavita Bala « 20

Cornell C54620 Fall 2015 » Lecture 6 (with previous instructor Marschner)

Camera

* Orthonormal bases
— viewPoint == e
— viewDir == -w, viewUp == v
* Compute u from the above

Cornell CS4620 Fall 2015 « Lecture 6

© 2015 Kavita Bala * 2!
(with previous instructor Marschner)

Generating eye rays—perspective

* View rectangle needs to be away from viewpoint
* Distance is important: “focal length” of camera

— still use camera frame but position view rect away from
viewpoint

— ray origin always e
— ray direction now
controlled by s

p=¢
r)=p+ud

i .22
Cornell CS4620 Fall 2015 * Lecture 6 _ - ©2015 Kavita Bala
(with previous instructor Marschner)

Generating eye rays—perspective

 Compute s in the same way; just subtract dw

— coordinates of s are (u, v, —d)

s=e+uu-+ovv —dw
p=e d=s—e
r(t) =p+td

© 2015 Kavi?a Bala + 23

Cornell C54620 Fall 2015 » Lecture 6 (with previous instructor Marschner)

Specifying views in Ray |

<camera type="PerspectiveCamera">
<viewPoint>10 4.2 6</viewPoint>
<viewDir>-5 -8.1 -8</viewDir>
<viewUp>0 1 0</viewUp>
<projDistance>6</projDistance>
<viewWidth>4</viewWidth>
<viewHeight>2.25</viewHeight>

</camera>

<camera type="PerspectiveCamera">
<viewPoint>10 4.2 6</viewPoint>
<viewDir>-5 -8.1 -8</viewDir>
<viewUp>0 1 0</viewUp>
<projDistance>8</projDistance>
<viewWidth>4</viewWidth>
<viewHeight>2.25</viewHeight>

</camera>

Cornell CS4620 Fall 2015 ¢« Lecture 6

© 2015 Kavita Bala * 24
(with previous instructor Marschner)

Camera

* Orthonormal bases
— viewPoint == e
— viewDir == -w, viewUp == v
* Compute u from the above

| = -viewWidth/2
r = +viewWidth/2
n_x = imageWidth

Cornell CS4620 Fall 2015 « Lecture 6

© 2015 Kavita Bala » 25
(with previous instructor Marschner)

Where are the pixels located?

J j=1.5
()(0, 2) (@] (@] O(3.2)
(0) (@) (@) (@)
(0,7)
I
To0| 10| Tro|l B0]
j=-1.5
Gz i
Il Il

Cornell CS4620 Fall 2015 « Lecture 6

© 2015 Kavita Bala + 26
(with previous instructor Marschner)

