Ray Tracing

CS 4620 Lecture 5

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala * |



Anhnhouncements

* Hope you had a good break!

* Al due Thursday

* Will post updated office hours in a calendar to make
sure we are all synced up

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala * 2



What is graphics!?

* Scenes
— Triangles
— Materials
— Lights

* Images

— Pixels

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala * 3



T, §\§u 2
vi/ vy D4 . ’

O e
.H%% | w o

A s b

el

e
R R e e ——

r.-wr:

o0
£
2
-
£
=

ion

t

jec

[424nQ 3y23.1q)y7 g/ 2J01oRy 8 WoqED)]

Plane pro




Two approaches to rendering

* These projection ideas describe the relationship
between the world and the image

* But how do we use them to compute an image!

for each object in the scene { for each pixel in the image {
for each pixel in the image { for each object in the scene {
if (object affects pixel) { if (object affects pixel) {

do something

do something
5 5
}

}
object order image order
or or
rasterization ray tracing

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala * 5



Object Order

* To render an image of a 3D scene, we project it onto a
plane

* Most common projection type is perspective projection

&
/
Sj

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala * 6




Ray tracing idea

* Start with a pixel—what belongs at that pixel?
* Set of points that project to a point in the image: a ray

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala s 7



Ray tracing idea

U/

-

I light source
viewer (eye)

<

c

3.

Vi =
/ “

Shy, Ny %.

visible point

objects
in scene

Cornell CS4620 Fall 2015 « Lecture 5

© 2015 Kavita Bala * 8



Ray tracing algorithm

\/

—

>;\\ light source

viewer (eye)

Y"

for each pixel {
compute viewing ray
intersect ray with scene
compute illumination at visible point
put result into image

}

visible point

objects
In scene

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala * 9



Math review

* Read:
—Tiger, Chapter 2, 5: Misc Math, Linear Algebra
— Gortler, Chapter |, 2: Linear

* Vectors and points

* Vector operations
—addition
—scalar product

* More products
—dot product

—cross product

Cornell CS4620/5620 Fall 2012 ¢« Lecture 2 © ZQIZ Kavita Bala = 10

(with previous instructors James/Marschner)



Math review

* Vectors and points
—P = (x,Y, z)
-V =(a, b, )

* Vector operations
—addition
—scalar product

* Point operations

—subtraction

Cornell CS4620/5620 Fall 2012 ¢« Lecture 2

© 2012 Kavita Bala *

(with previous ins

tructors James/Marschner)



Math review

* Vectors and points
-P=(%2)
-V =(a, b, )
* More products
—dot product
* geometric interpretation

—cross product

* geometric interpretation

Cornell CS4620/5620 Fall 2012 ¢« Lecture 2

© 2012 Kavita Bala *

(with previous instructors James/Marschner)

12



Ray intersection

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala * 13



Ray: a half line

* Standard representation: point p and direction d
r(t) =p+1td
— this is a parametric equation for the line
— lets us directly generate the points on the line
— if we restrict to t > 0 then we have a ray

— note replacing d with &d doesn’t change ray (x > 0)

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala * 14



Ray-sphere intersection: algebraic

* Condition |: point is on ray
r(t) =p+td

* Condition 2: point is on sphere

— assume unit sphere; see Shirley or notes for general
x| =1 & x> =1
f(x)=x-x—1=0
* Substitute:
(p+td)-(p+td)—1=0

— this is a quadratic equation in t

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala * |5



Ray-sphere intersection: algebraic

* Solution for t by quadratic formula:
—d-p+/(d-p?-(d-d)(p-p—1)
d-d

t=—d-p+/(d pP—p p+l

— simpler form holds when d is a unit vector
but we won’t assume this in practice (reason later)

— P’ll use the unit-vector form to make the geometric
interpretation

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala * 16



Ray-sphere intersection: geometric

[

P
tm, = —p-d
2, =p-p—(p-d)’
At = /112

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala ¢ |7



Image so far

* With sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <=iy <ny
for 0 <=ix <nx {
ray = camera.getRay(ix, iy);
bool didhit = s.intersect(ray, 0, +inf)
if didhit
image.set(ix, iy, white);

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala * I8



