
© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Ray Tracing

CS 4620 Lecture 5

1



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Announcements

• Hope you had a good break!

• A1 due Thursday

• Will post updated office hours in a calendar to make 
sure we are all synced up

2



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

What is graphics?

• Scenes
– Triangles
– Materials
– Lights

• Images
– Pixels

3



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Plane projection in drawing
[C

ar
lb

om
 &

 P
ac

io
re

k 
78

, A
lb

re
ch

t 
D

ur
er

]

4



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Two approaches to rendering

• These projection ideas describe the relationship 
between the world and the image

• But how do we use them to compute an image?

5

for each object in the scene { 
for each pixel in the image { 

if (object affects pixel) { 
do something 

} 
} 

}
object order

or
rasterization

image order
or

ray tracing

for each pixel in the image { 
for each object in the scene { 

if (object affects pixel) { 
do something 

} 
} 

}
We will do this first



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Object Order

• To render an image of a 3D scene, we project it onto a 
plane

• Most common projection type is perspective projection

6



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Ray tracing idea

• Start with a pixel—what belongs at that pixel?
• Set of points that project to a point in the image: a ray

7



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Ray tracing idea

8



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Ray tracing algorithm

for each pixel { 
    compute viewing ray 
    intersect ray with scene 
    compute illumination at visible point 
    put result into image 
}

9



© 2012 Kavita Bala  •
(with previous instructors James/Marschner) 

Cornell CS4620/5620 Fall 2012 • Lecture 2

Math review

• Read:  
– Tiger, Chapter 2, 5: Misc Math, Linear Algebra 

– Gortler, Chapter 1, 2: Linear 

• Vectors and points

• Vector operations
– addition

– scalar product

• More products
– dot product

– cross product

10



© 2012 Kavita Bala  •
(with previous instructors James/Marschner) 

Cornell CS4620/5620 Fall 2012 • Lecture 2

Math review

• Vectors and points
– P = (x, y, z) 

– V = (a, b, c)

• Vector operations
– addition

– scalar product

• Point operations
– subtraction

11



© 2012 Kavita Bala  •
(with previous instructors James/Marschner) 

Cornell CS4620/5620 Fall 2012 • Lecture 2

Math review

• Vectors and points
– P = (x, y, z)

– V = (a, b, c)

• More products
– dot product

• geometric interpretation

– cross product

• geometric interpretation

12



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Ray intersection

13



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Ray: a half line

• Standard representation: point p and direction d 

– this is a parametric equation for the line
– lets us directly generate the points on the line
– if we restrict to t > 0 then we have a ray
– note replacing d with αd doesn’t change ray (α > 0)

14



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Ray-sphere intersection: algebraic

• Condition 1: point is on ray

• Condition 2: point is on sphere
– assume unit sphere; see Shirley or notes for general

• Substitute:

– this is a quadratic equation in t

15



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Ray-sphere intersection: algebraic

• Solution for t by quadratic formula:

– simpler form holds when d is a unit vector  
but we won’t assume this in practice (reason later)

– I’ll use the unit-vector form to make the geometric 
interpretation

16



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Ray-sphere intersection: geometric

17



© 2015 Kavita Bala • Cornell CS4620 Fall 2015 • Lecture 5

Image so far

• With sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0); 
for 0 <= iy < ny 
    for 0 <= ix < nx { 
        ray = camera.getRay(ix, iy); 
        bool didhit = s.intersect(ray, 0, +inf) 
        if didhit 
            image.set(ix, iy, white); 
    }

18


