Ray Tracing

CS 4620 Lecture 5
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Anhnhouncements

* Hope you had a good break!

* Al due Thursday

* Will post updated office hours in a calendar to make
sure we are all synced up
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What is graphics!?

* Scenes
— Triangles
— Materials
— Lights

* Images

— Pixels
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Two approaches to rendering

* These projection ideas describe the relationship
between the world and the image

* But how do we use them to compute an image!

for each object in the scene { for each pixel in the image {
for each pixel in the image { for each object in the scene {
if (object affects pixel) { if (object affects pixel) {

do something

do something
5 5
}

}
object order image order
or or
rasterization ray tracing
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Object Order

* To render an image of a 3D scene, we project it onto a
plane

* Most common projection type is perspective projection

&
/
Sj
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Ray tracing idea

* Start with a pixel—what belongs at that pixel?
* Set of points that project to a point in the image: a ray
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Ray tracing idea
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Ray tracing algorithm
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>;\\ light source

viewer (eye)
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for each pixel {
compute viewing ray
intersect ray with scene
compute illumination at visible point
put result into image

}

visible point

objects
In scene
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Math review

* Read:
—Tiger, Chapter 2, 5: Misc Math, Linear Algebra
— Gortler, Chapter |, 2: Linear

* Vectors and points

* Vector operations
—addition
—scalar product

* More products
—dot product

—cross product
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Math review

* Vectors and points
—P = (x,Y, z)
-V =(a, b, )

* Vector operations
—addition
—scalar product

* Point operations

—subtraction
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Math review

* Vectors and points
-P=(%2)
-V =(a, b, )
* More products
—dot product
* geometric interpretation

—cross product

* geometric interpretation
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Ray intersection
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Ray: a half line

* Standard representation: point p and direction d
r(t) =p+1td
— this is a parametric equation for the line
— lets us directly generate the points on the line
— if we restrict to t > 0 then we have a ray

— note replacing d with &d doesn’t change ray (x > 0)

Cornell CS4620 Fall 2015 ¢ Lecture 5 © 2015 Kavita Bala * 14



Ray-sphere intersection: algebraic

* Condition |: point is on ray
r(t) =p+td

* Condition 2: point is on sphere

— assume unit sphere; see Shirley or notes for general
x| =1 & x> =1
f(x)=x-x—1=0
* Substitute:
(p+td)-(p+td)—1=0

— this is a quadratic equation in t
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Ray-sphere intersection: algebraic

* Solution for t by quadratic formula:
—d-p+/(d-p?-(d-d)(p-p—1)
d-d

t=—d-p+/(d pP—p p+l

— simpler form holds when d is a unit vector
but we won’t assume this in practice (reason later)

— P’ll use the unit-vector form to make the geometric
interpretation
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Ray-sphere intersection: geometric

[

P
tm, = —p-d
2, =p-p—(p-d)’
At = /112
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Image so far

* With sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <=iy <ny
for 0 <=ix <nx {
ray = camera.getRay(ix, iy);
bool didhit = s.intersect(ray, 0, +inf)
if didhit
image.set(ix, iy, white);
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