
© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Triangle meshes (contd.)

CS 4620 Lecture 3

1

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Announcements

• A1 is out
– Part written: do ALONE
– Programming: do in pairs, can do alone but fully responsible

• KB: Traveling starting tomorrow (No office hours)
• Wed: Blender lecture by Nic
• Friday: History of graphics (video), flows into 4621 class
• Monday

– Labor Day!

• See you next Wednesday

2

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Indexed triangle set

• array of vertex positions

– float[nV][3]: 12 bytes per vertex

• (3 coordinates x 4 bytes) per vertex

• array of triples of indices (per triangle)

– int[nT][3]: about 24 bytes per vertex

• 2 triangles per vertex (on average)
• (3 indices x 4 bytes) per triangle

• total storage: 36 bytes per vertex (factor of 2 savings)
• represents topology and geometry separately
• finding neighbors is at least well defined

3

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Triangle strips

• Take advantage of the  
mesh property
– each triangle is usually 

adjacent to the previous
– let every vertex create a triangle by reusing the second and

third vertices of the previous triangle
– every sequence of three vertices produces a triangle (but not

in the same order)
– e. g., 0, 1, 2, 3, 4, 5, 6, 7, … leads to  

(0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), …
– for long strips, this requires about one index per triangle

4

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Triangle strips

5

4, 0

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Triangle strips

• array of vertex positions

– float[nV][3]: 12 bytes per vertex

• (3 coordinates x 4 bytes) per vertex

• array of index lists

– int[nS][variable]: 2 + n indices per strip

– on average, (1 + ε) indices per triangle (assuming long strips)

• 2 triangles per vertex (on average)
• about 4 bytes per triangle (on average)

• total is 20 bytes per vertex (limiting best case)
– factor of 3.6 over separate triangles; 1.8 over indexed mesh

6

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Triangle fans

• Same idea as triangle strips, but keep oldest rather than
newest
– every sequence of three vertices produces a triangle
– e. g., 0, 1, 2, 3, 4, 5, … leads to  

(0 1 2), (0 2 3), (0 3 4), (0 4 5), …
– for long fans, this requires  

about one index per triangle
• Memory considerations exactly the 

same as triangle strip

7

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Example: unit sphere

• position:

• normal is position 
(easy!)

8

ɸ
θ

x = cos ✓ sin�

y = sin ✓

z = cos ✓ cos�

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Interpolated normals—2D example

• Approximating circle with increasingly many segments
• Max error in position error drops  

by factor of 4 at each step
• Max error in normal  

only drops 
by factor of 2

9

16

32

64

8%, 11°

2%, 6°

0.5%, 3°

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

How to think about vertex normals

• Piecewise planar approximation converges pretty
quickly to the smooth geometry as the number of
triangles increases

• But the surface normals don’t converge so well

• Better: store the “real” normal at each vertex, and
interpolate to get normals that vary gradually across
triangles

10

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Topology vs. geometry

• two completely separate issues:
• mesh topology: how the triangles are connected

(ignoring the positions entirely)
• geometry: where the triangles are in 3D space

11

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Topology/geometry examples

• same geometry, different mesh topology:

• same mesh topology, different geometry:

12

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Topological validity

• strongest property: be a manifold
– this means that no points  

should be "special"
– edge points: each edge  

must have exactly 2 triangles
– vertex points: each vertex  

must have one loop of triangles

13

manifold not 
manifold

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Topological validity

• Consistent orientation
– Which side is the “front” or “outside” of the surface and

which is the “back” or “inside?”
– rule: you are on the outside when you see the vertices in

counter-clockwise order
– in mesh, neighboring triangles should agree about which side

is the front!
– caution: not always possible

14

AB

C

D

AB

C

D

OK bad

non-orientable

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Texture Mapping
• Cannot model every single change using primitives
• Instead we make the shading parameters (and other

properties) vary across the surface

15

\

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Texture Mapping: applications

• Surprisingly simple idea but with big results

16

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Examples

17

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Examples of projector functions

• For a sphere: latitude-longitude coordinates
– maps point to its latitude and longitude

[m
ap: Peter H

. D
ana]

18

© 2015 Kavita Bala •
(with previous instructor Marschner) Cornell CS4620 Fall 2015 • Lecture 3

Cylinder

19

