Triangle meshes I

CS 4620 Lecture 2

Shape

Andrzej Barabasz
spheres

approximate
sphere
© 2015 Kavita Bala • (with previous instructor Marschner)

Ottawa Convention Center

PATRIOT Engineering
finite element analysis
© 2015 Kavita Bala • (with previous instructor Marschner)

A small triangle mesh

12 triangles, 8 vertices
© 2015 Kavita Bala • (with previous instructor Marschner)

A large mesh

10 million triangles from a high-resolution 3D scan

Triangles

- Defined by three vertices
- Lives in the plane containing those vertices
- Vector normal to plane is the triangle's normal
- Conventions (for this class, not everyone agrees):
- vertices are counter-clockwise as seen from the "outside" or "front"
- surface normal points towards the outside ("outward facing normals")

Triangle meshes

- A bunch of triangles in 3D space that are connected together to form a surface
- Geometrically, a mesh is a piecewise planar surface
- almost everywhere, it is planar
- exceptions are at the edges where triangles join
- Often, it's a piecewise planar approximation of a smooth surface
- in this case the creases between triangles are artifacts-we don't want to see them

Representation of triangle meshes

- Compactness
- Efficiency for rendering
- enumerate all triangles as triples of 3D points
- Efficiency of queries
- all vertices of a triangle
- all triangles around a vertex
- neighboring triangles of a triangle
- (need depends on application)
- finding triangle strips
- computing subdivision surfaces
- mesh editing

Representations for triangle meshes

- Separate triangles
- Indexed triangle set
 crucial for first assignment
- shared vertices
- Triangle strips and triangle fans
- compression schemes for fast transmission
- Triangle-neighbor data structure
- supports adjacency queries
- Winged-edge data structure
- supports general polygon meshes
can read about in textbook (will discuss later if time)

Separate triangles

[0]		[1]	[2]
$\operatorname{tris}[0]$	x_{0}, y_{0}, z_{0}	x_{2}, y_{2}, z_{2}	x_{1}, y_{1}, z_{1}
$\operatorname{tris}[1]$	x_{0}, y_{0}, z_{0}	x_{3}, y_{3}, z_{3}	x_{2}, y_{2}, z_{2}
	\vdots	\vdots	\vdots

© 2015 Kavita Bala • (with previous instructor Marschner)

Separate triangles

- array of triples of points
- float[$\left.n_{T}\right][3][3]$: about 72 bytes per vertex
- 2 triangles per vertex (on average)
- 3 vertices per triangle
- 3 coordinates per vertex
- 4 bytes per coordinate (float)
- various problems
- wastes space (each vertex stored 6 times)
- cracks due to roundoff
- difficulty of finding neighbors at all
© 2015 Kavita Bala •

Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices

Triangle \{

 Vertex vertex[3]; \}Vertex \{
float position[3]; // or other data \}
// ... or ...

Mesh \{
float verts[nv][3]; // vertex positions (or other data) int tInd[nt][3]; // vertex indices \}
© 2015 Kavita Bala •

Indexed triangle set

© 2015 Kavita Bala • (with previous instructor Marschner)

Estimating storage space

- $n_{T}=\#$ tris; $n_{V}=\# v e r t s ; n_{E}=$ \#edges
- Euler: $n_{V}-n_{E}+n_{T}=2$ for a simple closed surface
- and in general sums to small integer
- argument for implication that $n_{T}: n_{E}: n_{V}$ is about 2:3:1

© 2015 Kavita Bala • (with previous instructor Marschner)

$$
\begin{aligned}
& V=12 \\
& E=30 \\
& F=20
\end{aligned}
$$

- $n_{T}=\#$ tris; $n_{V}=\#$ verts; $n_{E}=\#$ edges
- Euler: $n_{V}-n_{E}+n_{T}=2$ for a simple closed surface
- and in general sums to small integer
- argument for implication that $n_{T}: n_{E}: n_{V}$ is about 2:3:1

Indexed triangle set

- array of vertex positions
- float[$\left.n_{V}\right][3]$: 12 bytes per vertex
- (3 coordinates $\times 4$ bytes) per vertex
- array of triples of indices (per triangle)
$-\operatorname{int}\left[n_{T}\right][3]$: about 24 bytes per vertex
- 2 triangles per vertex (on average)
- (3 indices $\times 4$ bytes) per triangle
- total storage: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined

Data on meshes

- Often need to store additional information besides just the geometry
- Can store additional data at faces, vertices, or edges
- Examples
- colors stored on faces, for faceted objects
- information about sharp creases stored at edges
- any quantity that varies continuously (without sudden changes, or discontinuities) gets stored at vertices

Key types of vertex data

- Surface normals
- when a mesh is approximating a curved surface, store normals at vertices
- Texture coordinates
- 2D coordinates that tell you how to paste images on the surface
- Positions
- at some level this is just another piece of data
- position varies continuously between vertices

Differential geometry 101

- Tangent plane
- at a point on a smooth surface in 3D, there is a unique plane tangent to the surface, called the tangent plane
- Normal vector
- vector perpendicular to a surface (that is, to the tangent plane)
- only unique for smooth surfaces (not at corners, edges)

Surface parameterization

- A surface in 3D is a two-dimensional thing
- Sometimes we need 2D coordinates for points on the surface
- Defining these coordinates is parameterizing the surface
- Examples:
- cartesian coordinates on a rectangle (or other planar shape)
- cylindrical coordinates (θ, y) on a cylinder
- latitude and longitude on the Earth's surface
- spherical coordinates (θ, ϕ) on a sphere

Example: unit sphere

- position:

$$
\begin{aligned}
& x=\cos \theta \sin \phi \\
& y=\sin \theta \\
& z=\cos \theta \cos \phi
\end{aligned}
$$

- normal is position (easy!)

How to think about vertex normals

- Piecewise planar approximation converges pretty quickly to the smooth geometry as the number of triangles increases
- But the surface normals don't converge so well
- Better: store the "real" normal at each vertex, and interpolate to get normals that vary gradually across triangles

Interpolated normals-2D example

- Approximating circle with increasingly many segments
- Max error in position error drops by factor of 4 at each step
- Max error in normal only drops by factor of 2

