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A small triangle mesh

|2 triangles, 8 vertices
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A large mesh

|0 million triangles

from a high-resolution
3D scan
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scan by XYZRGB, inc.,image by MeshLab project
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Triangles

* Defined by three vertices

* Lives in the plane containing those vertices

* Vector normal to plane is the triangle’s normal

* Conventions (for this class, not everyone agrees):

— vertices are counter-clockwise as seen from the “outside” or
“front”

— surface normal points towards the outside (“outward facing
normals”)
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Triangle meshes

* A bunch of triangles in 3D space that are connected
together to form a surface

* Geometrically,a mesh is a piecewise planar surface
— almost everywhere, it is planar

— exceptions are at the edges where triangles join

* Often, it’s a piecewise planar approximation of a
smooth surface

— in this case the creases between triangles are artifacts—we
don’t want to see them
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Representation of triangle meshes

* Compactness
* Efficiency for rendering

— enumerate all triangles as triples of 3D points

* Efficiency of queries

— all vertices of a triangle

— all triangles around a vertex

— neighboring triangles of a triangle

— (need depends on application)
* finding triangle strips
e computing subdivision surfaces
* mesh editing
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Representations for triangle meshes

* Separate triangles

crucial for

* Indexed triangle set «—— first assignment

— shared vertices

* Triangle strips and triangle fans

— compression schemes for fast transmission

* Triangle-neighbor data structure

— supports adjacency queries can read about
: in textbook
* Winged-edge data structure (will discuss
— supports general polygon meshes later if time)
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Separate triangles
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Separate triangles

* array of triples of points

— float[n{][3][3]: about 72 bytes per vertex

* 2 triangles per vertex (on average)
* 3 vertices per triangle

* 3 coordinates per vertex

* 4 bytes per coordinate (float)

* various problems
— wastes space (each vertex stored 6 times)
— cracks due to roundoff
— difficulty of finding neighbors at all
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Indexed triangle set

* Store each vertex once
* Each triangle points to its three vertices

Triangle {
Vertex vertex[3];

}

Vertex {
float position[&]; // or other data

}
// ...0r ...

Mesh {
float verts[nv][3]; // vertex positions (or other data)

int tInd[nt][3]; // vertex indices

]
© 2015 Kavita Bala
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Indexed triangle set

verts[O]
verts[1]

tInd[O]
tInd[1]

X0 Y0: 20
X1: Y1241
X2 Y2:2)
X3:Y3,23

0,2
0,3,2
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Estimating storage space

* ny = #tris; ny, = Hverts; ng = #edges

* Euler:ny, —ng + ny =2 for a simple closed surface

— and in general sums to small integer

— argument for implication that np:ng:ny, is about 2:3:
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* np = #tris; ny, = #verts; np = #edges

* Euler:ny, —ng + ny =2 for a simple closed surface

— and in general sums to small integer

— argument for implication that npng:ny, is about 2:3:1
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Indexed triangle set

* array of vertex positions
— float[ny/][3]: 12 bytes per vertex

* (3 coordinates x 4 bytes) per vertex

* array of triples of indices (per triangle)
— int[ny][3]: about 24 bytes per vertex

* 2 triangles per vertex (on average)
* (3 indices x 4 bytes) per triangle

* total storage: 36 bytes per vertex (factor of 2 savings)
* represents topology and geometry separately
* finding neighbors is at least well defined
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Data on meshes

* Often need to store additional information besides just
the geometry

* Can store additional data at faces, vertices, or edges
* Examples

— colors stored on faces, for faceted objects
— information about sharp creases stored at edges

— any quantity that varies continuously (without sudden changes,
or discontinuities) gets stored at vertices
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Key types of vertex data

e Surface normals

— when a mesh is approximating a curved surface, store
normals at vertices

e Texture coordinates

— 2D coordinates that tell you how to paste images on the
surface

* Positions
— at some level this is just another piece of data
— position varies continuously between vertices
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Differential geometry 101

* Tangent plane

— at a point on a smooth surface in 3D, there is a unique plane
tangent to the surface, called the tangent plane

* Normal vector

— vector perpendicular
to a surface (that is,
to the tangent plane)

normal tangent planes

— only unique for smooth
surfaces (not at corners,

LT
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tangent planes
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Surface parameterization

* A surface in 3D is a two-dimensional thing

* Sometimes we need 2D coordinates for points on the
surface

* Defining these coordinates is parameterizing the surface
* Examples:

— cartesian coordinates on a rectangle (or other planar shape)
— cylindrical coordinates (0, y) on a cylinder
— latitude and longitude on the Earth’s surface

— spherical coordinates (0, ) on a sphere
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Example: unit sphere

* position:
x = cosfsin ¢
y = sin 6

2z = cosf cos ¢

* normal is position
(easy!)
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How to think about vertex normals

* Piecewise planar approximation converges pretty
quickly to the smooth geometry as the number of
triangles increases

* But the surface normals don’t converge so well

 Better:store the “real” normal at each vertex, and
interpolate to get normals that vary gradually across
triangles
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Cornell CS4620 Fall 2015 ¢ Lecture 2 (with previous instructor Marschner) 27



Interpolated normals—2D example

* Approximating circle with increasingly many segments
* Max error in position error drops

by factor of 4 at each step A
* Max error in normal o .
only drops 3%, 11
by factor of 2 16 A
2%, 6°
A A 444
-~
0.5%, 3°

Cornell CS4620 Fall 2015 « Lecture 2 A\



