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Ray Tracing Acceleration

CS 4620 Lecture 22
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Topics

• Transformations in ray tracing
– Transforming objects
– Transformation hierarchies

• Ray tracing acceleration structures
– Bounding volumes
– Bounding volume hierarchies
– Uniform spatial subdivision
– Adaptive spatial subdivision
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Transforming objects

• In modeling, we’ve seen the usefulness of 
transformations
– How to do the same in RT?

• Take spheres as an example: want to support 
transformed spheres
– Need a new Surface subclass

• Option 1: transform sphere into world coordinates
– Write code to intersect arbitrary ellipsoids

• Option 2: transform ray into sphere’s coordinates
– Then just use existing sphere intersection routine
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Intersecting transformed objects
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Implementing RT transforms

• Create wrapper object “TrasformedSurface”
– Has a transform T and a reference to a surface S
– To intersect:

• Transform ray to local coords (by inverse of T)
• Call surface.intersect
• Transform hit data back to global coords (by T)

– Intersection point
– Surface normal
– Any other relevant data (maybe none)
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Groups, transforms, hierarchies

• Often it’s useful to transform several objects at once
– Add “SurfaceGroup” as a subclass of Surface

• Has a list of surfaces
• Returns closest intersection

– Opportunity to move ray intersection code here to 
avoid duplication

• With TransformedSurface and SurfaceGroup you can 
put transforms below transforms
– Voilà! A transformation hierarchy.
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A transformation hierarchy

– Common optimization: merge transforms with groups

…

…

…

Group: car

Surface: body

Transform

Surface: tire Surface: hubcap

Transform

Group: wheel assy.

Group: wheel

TransformSurface: brake disc
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Instancing

• Anything worth doing is worth doing n times
• If we can transform objects, why not transform them 

several ways?
– Many models have repeated subassemblies

• Mechanical parts (wheels of car)
• Multiple objects (chairs in classroom, …)

– Nothing stops you from creating two TransformedSurface 
objects that reference the same Surface

• Allowing this makes the transformation tree into a DAG
– (directed acyclic graph)

• Mostly this is transparent to the renderer
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Hierarchy with instancing

…

Group: car

Surface: body

Transform

Transform Transform Transform

Group: wheel

…
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Hierarchies and performance

• Transforming rays is expensive
– minimize tree depth: flatten on input

• push all transformations toward leaves
• triangle meshes may do best to stay as group

– transform ray once, intersect with mesh
– internal group nodes still required for instancing

• can’t push two transforms down to same child!
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TransformGroup {
xf: A
Mesh {
v1, v2, v3, …

}
TransformGroup {

xf: B
Sphere {

radius: r
}

}
}

Mesh {
xf: A
v1, v2, v3, …

}
Sphere {

xf: BA
radius: r

}

Mesh {
Av1, Av2, Av3, …

}
Sphere {

xf: BA
radius: r

}
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Ray tracing acceleration

• Ray tracing is slow.  This is bad!
– Ray tracers spend most of their time in ray-surface 

intersection methods

• Ways to improve speed
– Make intersection methods more efficient

• Yes, good idea.  But only gets you so far
– Call intersection methods fewer times

• Intersecting every ray with every object is wasteful
• Basic strategy: efficiently find big chunks of geometry that 

definitely do not intersect a ray
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Bounding volumes

• Quick way to avoid intersections: bound object with a 
simple volume
– Object is fully contained in the volume
– If it doesn’t hit the volume, it doesn’t hit the object
– So test bvol first, then test object if it hits
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Bounding volumes

• Cost: more for hits and near misses, less for far misses
• Worth doing?  It depends:

– Cost of bvol intersection test should be small
• Therefore use simple shapes (spheres, boxes, …)

– Cost of object intersect test should be large
• Bvols most useful for complex objects

– Tightness of fit should be good
• Loose fit leads to extra object intersections
• Tradeoff between tightness and bvol intersection cost
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Implementing bounding volume

• Just add new Surface subclass, “BoundedSurface”
– Contains a bounding volume and a reference to a surface
– Intersection method:

• Intersect with bvol, return false for miss
• Return surface.intersect(ray)

– Like transformations, common to merge with group
– This change is transparent to the renderer (only it might run 

faster)

• Note that all Surfaces will need to be able to supply 
bounding volumes for themselves
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If it’s worth doing, it’s worth doing 
hierarchically!
• Bvols around objects may help
• Bvols around groups of objects will help
• Bvols around parts of complex objects will help
• Leads to the idea of using bounding volumes all the way 

from the whole scene down to groups of a few objects
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Implementing a bvol hierarchy

• A BoundedSurface can contain a list of Surfaces
• Some of those Surfaces might be more 

BoundedSurfaces
• Voilà! A bounding volume hierarchy

– And it’s all still transparent to the renderer
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BVH construction example
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BVH construction example
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BVH construction example
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BVH construction example
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BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example

19



© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 22

BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example
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Choice of bounding volumes

• Spheres -- easy to intersect, not always so tight
• Axis-aligned bounding boxes (AABBs) -- easy to 

intersect, often tighter (esp. for axis-aligned models)
• Oriented bounding boxes (OBBs) -- easy to intersect 

(but cost of transformation), tighter for arbitrary 
objects

• Computing the bvols
– For primitives -- generally pretty easy
– For groups -- not so easy for OBBs (to do well)
– For transformed surfaces -- not so easy for spheres
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Axis aligned bounding boxes

• Probably easiest to implement
• Computing for primitives

– Cube: duh!
– Sphere, cylinder, etc.: pretty obvious
– Groups or meshes: min/max of component parts

• AABBs for transformed surface
– Easy to do conservatively: bbox of the 8 corners of the bbox 

of the untransformed surface

• How to intersect them
– Treat them as an intersection of slabs (see Shirley)
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Intersecting boxes

22
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Ray-box intersection

• Could intersect with 6 faces individually
• Better way: box is the intersection of 3 slabs
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Ray-box intersection
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Ray-slab intersection

• 2D example
• 3D is the same!

24

(xmin, ymin)

(xmax, ymax)
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Ray-slab intersection
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Ray-slab intersection

• 2D example
• 3D is the same!
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Intersecting intersections

• Each intersection is an interval
• Want last entry point and

first exit point

25
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Building a hierarchy

• Usually do it top-down
• Make bbox for whole scene, then split into (maybe 2) 

parts
– Recurse on parts
– Stop when there are just a few objects in your box
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Building a hierarchy

• How to partition?
– Ideal: clusters
– Practical: partition along axis

• Center partition
– Less expensive, simpler
– Unbalanced tree (but may sometimes be better)

• Median partition
– More expensive
– More balanced tree

• Surface area heuristic
– Model expected cost of ray intersection
– Generally produces best-performing trees
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Regular space subdivision

• An entirely different approach: uniform grid of cells

28



© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 22

Regular grid example

• Grid divides space, not objects
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Traversing a regular grid
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Non-regular space subdivision

• k-d Tree
– subdivides space, like grid
– adaptive, like BVH
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Implementing acceleration structures 

• Conceptually simple to build acceleration structure 
into scene structure

• Better engineering decision to separate them
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