Subdivision overview

CS4620 Lecture 20

Introduction: corner cutting

- Piecewise linear curve too jagged for you? Lop off the corners!
- results in a curve with twice as many corners
- Still too jagged? Cut off the new corners
- process converges to a smooth curve
- Chaikin's algorithm

Introduction: corner cutting

- Piecewise linear curve too jagged for you? Lop off the corners!
- results in a curve with twice as many corners
- Still too jagged? Cut off the new corners
- process converges to a smooth curve
- Chaikin's algorithm
http://www.multires.caltech.edu/ teaching/demos/java/chaikin.htm

Introduction: corner cutting

- Piecewise linear curve too jagged for you? Lop off the corners!
- results in a curve with twice as many corners
- Still too jagged? Cut off the new corners
- process converges to a smooth curve
- Chaikin's algorithm
http://www.multires.caltech.edu/ teaching/demos/java/chaikin.htm

Introduction: corner cutting

- Piecewise linear curve too jagged for you? Lop off the corners!
- results in a curve with twice as many corners
- Still too jagged? Cut off the new corners
- process converges to a smooth curve
- Chaikin's algorithm
http://www.multires.caltech.edu/ teaching/demos/java/chaikin.htm

Introduction: corner cutting

- Piecewise linear curve too jagged for you? Lop off the corners!
- results in a curve with twice as many corners
- Still too jagged? Cut off the new corners
- process converges to a smooth curve
- Chaikin's algorithm
http://www.multires.caltech.edu/ teaching/demos/java/chaikin.htm

Corner cutting in equations

- New points are linear combinations of old ones
- Different treatment for odd-numbered and evennumbered points.

Spline-splitting math for B-splines

- Can use spline-matrix math from previous lecture to split a B-spline segment in two at $s=t=0.5$.
- Result is especially nice because the rules for adjacent segments agree (not true for all splines).

$$
\begin{aligned}
& S_{L}=\left[\begin{array}{llll}
s^{3} & & & \\
& s^{2} & & \\
& & s & \\
& & & 1
\end{array}\right] \quad \begin{array}{l}
P_{L}=M^{-1} S_{L} M P \\
P_{R}=M^{-1} S_{R} M P
\end{array} \quad P_{L}=\left[\begin{array}{cccc}
4 & 4 & 0 & 0 \\
1 & 6 & 1 & 0 \\
0 & 4 & 4 & 0 \\
0 & 1 & 6 & 1
\end{array}\right] \\
& S_{R}=\left[\begin{array}{cccc}
s^{3} & & & \\
3 s^{2}(1-s) & s^{2} & & \\
3 s(1-s)^{2} & 2 s(1-s) & s & \\
(1-s)^{3} & (1-s)^{2} & (1-s) & 1
\end{array}\right] \\
& P_{R}=\left[\begin{array}{llll}
1 & 6 & 1 & 0 \\
0 & 4 & 4 & 0 \\
0 & 1 & 6 & 1 \\
0 & 0 & 4 & 4
\end{array}\right]
\end{aligned}
$$

Subdivision for B-splines

- Control vertices of refined spline are linear combinations of the c.v.s of the coarse spline

ODD

EVEN

Drawing a picture of the rule

- Conventionally illustrate subdivision rules as a "mask" that you match against the neighborhood
- often implied denominator $=$ sum of weights

Cubic B-Spline

[Stanford CS468 Fall 2010 slides]

Subdivision curves

- Key idea: let go of the polynomials as the definition of the curve, and let the refinement rule define the curve
- Curve is defined as the limit of a refinement process
- properties of curve depend on the rules
- some rules make polynomial curves, some don't
- complexity shifts from implementations to proofs

Playing with the rules

- Once a curve is defined using subdivision we can customize its behavior by making exceptions to the rules.
- Example: handle endpoints by simply using the mask [I] at that point.
- Resulting curve is a uniform B-spline in the middle, but near the exceptional points it is something different.
- it might not be a polynomial
- but it is still linear, still has basis functions
- the three coordinates of a surface point are still separate

From curves to surfaces

Subdivision surfaces

Figure 2.2: Example of subdivision for a surface, showing 3 successive levels of refinement. On the left an initial triangular mesh approximating the surface. Each triangle is split into 4 according to a particular subdivision rule (middle). On the right the mesh is subdivided in this fashion once again.

Generalizing from curves to surfaces

- Two parts to subdivision process
- Subdividing the mesh (computing new topology)
- For curves: replace every segment with two segments
- For surfaces: replace every face with some new faces
- Positioning the vertices (computing new geometry)
- For curves: two rules (one for odd vertices, one for even)
- New vertex's position is a weighted average of positions of old vertices that are nearby along the sequence
- For surfaces: two kinds of rules (still called odd and even)
- New vertex's position is a weighted average of positions of old vertices that are nearby in the mesh

Subdivision of meshes

- Quadrilaterals
- Catmull-Clark 1978
- Triangles
- Loop I987

Face split for triangles

Loop regular rules

Catmull-Clark regular rules

Creases

- With splines, make creases by turning off continuity constraints
- With subdivision surfaces, make creases by marking edges "sharp"
- use different rules for vertices with sharp edges
- these rules produce B-splines that depend only on vertices along crease

Crease and boundary
a. Masks for odd vertices

b. Masks for even vertices

Boundaries

- At boundaries the masks do not work
- mesh is not manifold; edges do not have two triangles
- Solution: same as crease
- shape of boundary is controlled only by vertices along boundary

Crease and boundary

a. Masks for odd vertices
b. Masks for even vertices

Extraordinary vertices

- Vertices that don't have the "standard" valence
- Unavoidable for most topologies
- Difference from splines
- treatment of extraordinary vertices is really the only way subdivision surfaces are different from spline patches

Full Loop rules (triangle mesh)

Full Catmull-Clark rules (quad mesh)

Mask for a face vertex

Mask for an edge vertex

Mask for a boundary odd vertex
a. Masks for odd vertices

Interior

Crease and boundary

Loop Subdivision Example

control polyhedron

Loop Subdivision Example

Loop Subdivision Example

Loop Subdivision Example

subdivision level 1

Loop Subdivision Example

Loop Subdivision Example

subdivision level 1

Loop Subdivision Example

Loop Subdivision Example

subdivision level 1

Loop Subdivision Example

subdivision level 1

Loop Subdivision Example

subdivision level 2

Loop Subdivision Example

subdivision level 3

Loop Subdivision Example

subdivision level 4

Loop Subdivision Example

limit surface

Relationship to splines

- In regular regions, behavior is identical
- At extraordinary vertices, achieve C^{\prime}
- near extraordinary, different from splines
- Linear everywhere
- mapping from parameter space to 3D is a linear combination of the control points
- "emergent" basis functions per control point
- match the splines in regular regions
- "custom" basis functions around extraordinary vertices

Loop vs. Catmull-Clark

Loop

Catmull-Clark

Loop vs. Catmull-Clark

[Schröder \& Zorin SIGGRAPH 2000 course 23]

Loop vs. Catmull-Clark

Loop
(after splitting faces)

Loop with creases

Catmull-Clark with creases

Variable sharpness creases

- Idea: subdivide for a few levels using the crease rules, then proceed with the normal smooth rules.
- Result: a soft crease that gets sharper as we increase the number of levels of sharp subdivision steps

sharpness 0

sharpness I

sharpness 2

sharpness 3

Geri's Game

- Pixar short film to test subdivision in production
- Catmull-Clark (quad mesh) surfaces
- complex geometry
- extensive use of creases
- subdivision surfaces to support cloth dynamics

