
© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 20

Subdivision overview

CS4620 Lecture 20
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• Piecewise linear curve too jagged for you? Lop off the 
corners!
– results in a curve with twice as many corners

• Still too jagged? Cut off 
the new corners
– process converges

to a smooth curve
– Chaikin’s algorithm
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Introduction: corner cutting
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Corner cutting in equations

• New points are linear combinations of old ones
• Different treatment for odd-numbered and even-

numbered points.
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Spline-splitting math for B-splines

• Can use spline-matrix math from previous lecture to 
split a B-spline segment in two at s = t = 0.5.

• Result is especially nice because the rules for adjacent 
segments agree (not true for all splines).
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Subdivision for B-splines

• Control vertices of refined spline are linear 
combinations of the c.v.s of the coarse spline

ODD EVEN
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Drawing a picture of the rule

• Conventionally illustrate subdivision rules as a “mask” 
that you match against the neighborhood
– often implied denominator = sum of weights

6

B-spline

corner-cutting

odd

even

odd

even

1 6

4 4

3 1

1

1 3



© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 20 7[Stanford CS468 Fall 2010 slides]



© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 20 7

Cubic B-SplineCubic B Spline

even odd
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Subdivision curves

• Key idea: let go of the polynomials as the definition of 
the curve, and let the refinement rule define the curve

• Curve is defined as the limit of a refinement process
– properties of curve depend on the rules
– some rules make polynomial curves, some don’t
– complexity shifts from implementations to proofs

8
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Playing with the rules

• Once a curve is defined using subdivision we can 
customize its behavior by making exceptions to the 
rules.

• Example: handle endpoints by simply using the mask [1] 
at that point.

• Resulting curve is a uniform B-spline in the middle, but 
near the exceptional points it is something different.
– it might not be a polynomial
– but it is still linear, still has basis functions
– the three coordinates of a surface point are still separate

9
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From curves to surfaces
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Subdivision surfaces
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Generalizing from curves to surfaces

• Two parts to subdivision process
• Subdividing the mesh (computing new topology)

– For curves: replace every segment with two segments
– For surfaces: replace every face with some new faces

• Positioning the vertices (computing new geometry)
– For curves: two rules (one for odd vertices, one for even)

• New vertex’s position is a weighted average of positions 
of old vertices that are nearby along the sequence

– For surfaces: two kinds of rules (still called odd and even)
• New vertex’s position is a weighted average of positions 

of old vertices that are nearby in the mesh

12
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Subdivision of meshes

• Quadrilaterals
– Catmull-Clark 1978

• Triangles
– Loop 1987
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Loop regular rules
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Catmull-Clark regular rules

15



© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 20

Creases

• With splines, make creases by turning off continuity 
constraints

• With subdivision surfaces, make creases by marking 
edges “sharp”
– use different rules for vertices with sharp edges
– these rules produce B-splines that depend only on vertices 

along crease
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Boundaries

• At boundaries the masks do not work
– mesh is not manifold; edges do not have two triangles

• Solution: same as crease
– shape of boundary is controlled only by vertices along 

boundary

[S
ch

rö
de

r 
&

 Z
or

in
 S

IG
G

R
A

PH
 2

00
0 

co
ur

se
 2

3]

17



© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 20

Extraordinary vertices

• Vertices that don’t have the “standard” valence
• Unavoidable for most topologies
• Difference from splines

– treatment of extraordinary 
vertices is really the only way 
subdivision surfaces are different 
from spline patches
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Full Loop rules (triangle mesh)
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Full Catmull-Clark rules (quad mesh)
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Loop Subdivision Example

control polyhedron
21



© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 20

Loop Subdivision Example

refined 
control polyhedron
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Loop Subdivision Example

odd
subdivision mask
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Loop Subdivision Example

subdivision level 1
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Loop Subdivision Example

even
subdivision mask
(ordinary vertex)  
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Loop Subdivision Example

subdivision level 1
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Loop Subdivision Example

even
subdivision mask

(extraordinary vertex)  
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Loop Subdivision Example

subdivision level 1
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Loop Subdivision Example

subdivision level 1
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Loop Subdivision Example

subdivision level 2
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Loop Subdivision Example

subdivision level 3
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Loop Subdivision Example

subdivision level 4
32
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Loop Subdivision Example

limit surface
33
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Relationship to splines

• In regular regions, behavior is identical
• At extraordinary vertices, achieve C1

– near extraordinary, different from splines

• Linear everywhere
– mapping from parameter space to 3D is a linear combination 

of the control points
– “emergent” basis functions per control point

• match the splines in regular regions
• “custom” basis functions around extraordinary vertices

34
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Loop vs. Catmull-Clark
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Loop vs. Catmull-Clark
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Loop vs. Catmull-Clark

Loop
(after splitting faces)

Catmull-Clark [S
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Loop with creases
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Catmull-Clark with creases

[D
eR

os
e 

et
 a

l. 
SI

G
G

R
A

PH
 1

99
8]

39



© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 20

Variable sharpness creases

• Idea: subdivide for a few levels using the crease rules, 
then proceed with the normal smooth rules.

• Result:  a soft crease that gets sharper as we increase 
the number of levels of sharp subdivision steps

40

Clark scheme to admit semi-sharp creases – that is, creases of con-
trollable sharpness, a simple example of which is shown in Figure 7.

(a) (b)

(c) (d)

(e)

Figure 7: An example of a semi-sharp crease. The control mesh for
each of these surfaces is the unit cube, drawn in wireframe, where
crease edges are red and smooth edges are yellow. In (a) the crease
sharpness is 0, meaning that all edges are smooth. The sharpnesses
for (b), (c), (d), and (e) are 1, 2, 3, and infinite, respectively.

One approach to achieve semi-sharp creases is to develop subdi-
vision rules whose weights are parametrized by the sharpness s of
the crease. This approach is difficult because it can be quite hard
to discover rules that lead to the desired smoothness properties of
the limit surfaces. One of the roadblocks is that subdivision rules
around a crease break a symmetry possessed by the smooth rules:
typical smooth rules (such as the Catmull-Clark rules) are invariant
under cyclic reindexing, meaning that discrete Fourier transforms
can be used to prove properties for vertices of arbitrary valence (cf.
Zorin [19]). In the absence of this invariance, each valence must
currently be considered separately, as was done by Schweitzer [15].
Another difficulty is that such an approach is likely to lead to a
zoo of rules depending on the number and configuration of creases
through a vertex. For instance, a vertex with two semi-sharp creases
passing through it would use a different set of rules than a vertex
with just one crease through it.
Our approach is to use a very simple process we call hybrid sub-

division. The general idea is to use one set of rules for a finite but

arbitrary number of subdivision steps, followed by another set of
rules that are applied to the limit. Smoothness therefore depends
only on the second set of rules. Hybrid subdivision can be used to
obtain semi-sharp creases by using infinitely sharp rules during the
first few subdivision steps, followed by use of the smooth rules for
subsequent subdivision steps. Intuitively this leads to surfaces that
are sharp at coarse scales, but smooth at finer scales.
Now the details. To set the stage for the general situation where

the sharpness can vary along a crease, we consider two illustrative
special cases.
Case 1: A constant integer sharpness s crease: We subdivide

s times using the infinitely sharp rules, then switch to the smooth
rules. In other words, an edge of sharpness s 0 is subdivided us-
ing the sharp edge rule. The two subedges created each have sharp-
ness s 1. A sharpness s 0 edge is considered smooth, and it
stays smooth for remaining subdivisions. In the limit where s ∞
the sharp rules are used for all steps, leading to an infinitely sharp
crease. An example of integer sharpness creases is shown in Fig-
ure 7. A more complicated example where two creases of different
sharpnesses intersect is shown in Figure 8.

(a) (b)

(c) (d)

Figure 8: A pair of crossing semi-sharp creases. The control mesh
for all surfaces is the octahedron drawn in wire frame. Yellow de-
notes smooth edges, red denotes the edges of the first crease, and
magenta denotes the edges of the second crease. In (a) the crease
sharpnesses are both zero; in (b), (c), and (d) the sharpness of the
red crease is 4. The sharpness of the magenta crease in (b), (c), and
(d) is 0, 2, and 4, respectively.

Case 2: A constant, but not necessarily integer sharpness s: the
main idea here is to interpolate between adjacent integer sharp-
nesses. Let s and s denote the floor and ceiling of s, respectively.
Imagine creating two versions of the crease: the first obtained by
subdividing s times using the sharp rules, then subdividing one ad-
ditional time using the smooth rules. Call the vertices of this first
version v 0 v 1 . The second version, the vertices of which we
denote by v 0 v 1 , is created by subdividing s times using the
sharp rules. We take the s -times subdivided semi-sharp crease to
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each of these surfaces is the unit cube, drawn in wireframe, where
crease edges are red and smooth edges are yellow. In (a) the crease
sharpness is 0, meaning that all edges are smooth. The sharpnesses
for (b), (c), (d), and (e) are 1, 2, 3, and infinite, respectively.

One approach to achieve semi-sharp creases is to develop subdi-
vision rules whose weights are parametrized by the sharpness s of
the crease. This approach is difficult because it can be quite hard
to discover rules that lead to the desired smoothness properties of
the limit surfaces. One of the roadblocks is that subdivision rules
around a crease break a symmetry possessed by the smooth rules:
typical smooth rules (such as the Catmull-Clark rules) are invariant
under cyclic reindexing, meaning that discrete Fourier transforms
can be used to prove properties for vertices of arbitrary valence (cf.
Zorin [19]). In the absence of this invariance, each valence must
currently be considered separately, as was done by Schweitzer [15].
Another difficulty is that such an approach is likely to lead to a
zoo of rules depending on the number and configuration of creases
through a vertex. For instance, a vertex with two semi-sharp creases
passing through it would use a different set of rules than a vertex
with just one crease through it.
Our approach is to use a very simple process we call hybrid sub-

division. The general idea is to use one set of rules for a finite but

arbitrary number of subdivision steps, followed by another set of
rules that are applied to the limit. Smoothness therefore depends
only on the second set of rules. Hybrid subdivision can be used to
obtain semi-sharp creases by using infinitely sharp rules during the
first few subdivision steps, followed by use of the smooth rules for
subsequent subdivision steps. Intuitively this leads to surfaces that
are sharp at coarse scales, but smooth at finer scales.
Now the details. To set the stage for the general situation where

the sharpness can vary along a crease, we consider two illustrative
special cases.
Case 1: A constant integer sharpness s crease: We subdivide

s times using the infinitely sharp rules, then switch to the smooth
rules. In other words, an edge of sharpness s 0 is subdivided us-
ing the sharp edge rule. The two subedges created each have sharp-
ness s 1. A sharpness s 0 edge is considered smooth, and it
stays smooth for remaining subdivisions. In the limit where s ∞
the sharp rules are used for all steps, leading to an infinitely sharp
crease. An example of integer sharpness creases is shown in Fig-
ure 7. A more complicated example where two creases of different
sharpnesses intersect is shown in Figure 8.

(a) (b)

(c) (d)

Figure 8: A pair of crossing semi-sharp creases. The control mesh
for all surfaces is the octahedron drawn in wire frame. Yellow de-
notes smooth edges, red denotes the edges of the first crease, and
magenta denotes the edges of the second crease. In (a) the crease
sharpnesses are both zero; in (b), (c), and (d) the sharpness of the
red crease is 4. The sharpness of the magenta crease in (b), (c), and
(d) is 0, 2, and 4, respectively.

Case 2: A constant, but not necessarily integer sharpness s: the
main idea here is to interpolate between adjacent integer sharp-
nesses. Let s and s denote the floor and ceiling of s, respectively.
Imagine creating two versions of the crease: the first obtained by
subdividing s times using the sharp rules, then subdividing one ad-
ditional time using the smooth rules. Call the vertices of this first
version v 0 v 1 . The second version, the vertices of which we
denote by v 0 v 1 , is created by subdividing s times using the
sharp rules. We take the s -times subdivided semi-sharp crease to
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Geri’s Game

• Pixar short film to test 
subdivision in production
– Catmull-Clark (quad mesh) 

surfaces
– complex geometry
– extensive use of creases
– subdivision surfaces to support 

cloth dynamics

[D
eR

os
e 

et
 a

l. 
SI

G
G

R
A

PH
 1

99
8]

41


