2D Spline Curves

CS 4620 Lecture 18

Motivation: smoothness

- In many applications we need smooth shapes
- that is, without discontinuities

- So far we can make
- things with corners (lines, triangles, squares, rectangles, ...)
- circles, ellipses, other special shapes (only get you so far!)

Classical approach

- Pencil-and-paper draftsmen also needed smooth curves
- Origin of "spline:" strip of flexible metal
- held in place by pegs or weights to constrain shape
- traced to produce smooth contour

Translating into usable math

- Smoothness
- in drafting spline, comes from physical curvature minimization
- in CG spline, comes from choosing smooth functions
- usually low-order polynomials
- Control
- in drafting spline, comes from fixed pegs
- in CG spline, comes from user-specified control points

Defining spline curves

- At the most general they are parametric curves

$$
S=\{\mathbf{f}(t) \mid t \in[0, N]\}
$$

- For splines, $\mathbf{f}(t)$ is piecewise polynomial
- for this lecture, the discontinuities are at the integers

Defining spline curves

- At the most general they are parametric curves

$$
S=\{\mathbf{f}(t) \mid t \in[0, N]\}
$$

- For splines, $\mathbf{f}(t)$ is piecewise polynomial
- for this lecture, the discontinuities are at the integers

Defining spline curves

- At the most general they are parametric curves

$$
S=\{\mathbf{f}(t) \mid t \in[0, N]\}
$$

- For splines, $\mathbf{f}(t)$ is piecewise polynomial
- for this lecture, the discontinuities are at the integers

Defining spline curves

- At the most general they are parametric curves

$$
S=\{\mathbf{f}(t) \mid t \in[0, N]\}
$$

- For splines, $\mathbf{f}(t)$ is piecewise polynomial
- for this lecture, the discontinuities are at the integers

Defining spline curves

- Generally $\mathbf{f}(t)$ is a piecewise polynomial
- for this lecture, the discontinuities are at the integers
- e.g., a cubic spline has the following form over $[k, k+I]$:

$$
\begin{aligned}
& x(t)=a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{x} \\
& y(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y}
\end{aligned}
$$

- Coefficients are different for every interval

Coordinate functions

Coordinate functions

Coordinate functions

Coordinate functions

coordinate function $y(t)$

Coordinate functions

Control of spline curves

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
- interpolating: passes through points
- approximating: merely guided by points

Control of spline curves

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
- interpolating: passes through points
- approximating: merely guided by points

Control of spline curves

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
- interpolating: passes through points
- approximating: merely guided by points

Control of spline curves

- Specified by a sequence of controls (points or vectors)
- Shape is guided by control points (aka control polygon)
- interpolating: passes through points
- approximating: merely guided by points

How splines depend on their controls

- Each coordinate is separate
- the function $x(t)$ is determined solely by the x coordinates of the control points
- this means ID, 2D, 3D, ... curves are all really the same
- Spline curves are linear functions of their controls
- moving a control point two inches to the right moves $x(t)$ twice as far as moving it by one inch
$-x(t)$, for fixed t, is a linear combination (weighted sum) of the controls' x coordinates
- $\mathbf{f}(t)$, for fixed t, is a linear combination (weighted sum) of the controls

Plan

I. Spline segments

- how to define a polynomial on [0, I]
- ...that has the properties you want
-and is easy to control

2. Spline curves

- how to chain together lots of segments
- ...so that the whole curve has the properties you want
-and is easy to control

3. Refinement and evaluation

- how to add detail to splines
- how to approximate them with line segments

Spline Segments

Trivial example: piecewise linear

- This spline is just a polygon
- control points are the vertices
- But we can derive it anyway as an illustration
- Each interval will be a linear function
$-x(t)=a t+b$
- constraints are values at endpoints
$-b=x_{0} ; a=x_{1}-x_{0}$
- this is linear interpolation

Trivial example: piecewise linear

- Vector formulation

$$
\begin{aligned}
x(t) & =\left(x_{1}-x_{0}\right) t+x_{0} \\
y(t) & =\left(y_{1}-y_{0}\right) t+y_{0} \\
\mathbf{f}(t) & =\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) t+\mathbf{p}_{0}
\end{aligned}
$$

- Matrix formulation

$$
\mathbf{f}(t)=\left[\begin{array}{ll}
t & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{0} \\
\mathbf{p}_{1}
\end{array}\right]
$$

Trivial example: piecewise linear

- Basis function formulation
- regroup expression by \mathbf{p} rather than t

$$
\begin{aligned}
\mathbf{f}(t) & =\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) t+\mathbf{p}_{0} \\
& =(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}
\end{aligned}
$$

- interpretation in matrix viewpoint

$$
\mathbf{f}(t)=\left(\left[\begin{array}{ll}
t & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\right)\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1}
\end{array}\right]
$$

Trivial example: piecewise linear

- Vector blending formulation:"average of points"
- blending functions: contribution of each point as t changes

Hermite splines

- Less trivial example
- Form of curve: piecewise cubic
- Constraints: endpoints and tangents (derivatives)

Hermite splines

- Solve constraints to find coefficients

$$
\begin{aligned}
x(t) & =a t^{3}+b t^{2}+c t+d & & \\
x^{\prime}(t) & =3 a t^{2}+2 b t+c & & d=x_{0} \\
x(0) & =x_{0}=d & & c=x_{0}^{\prime} \\
x(1) & =x_{1}=a+b+c+d & & a=2 x_{0}-2 x_{1}+x_{0}^{\prime}+x_{1}^{\prime} \\
x^{\prime}(0) & =x_{0}^{\prime}=c & & b=-3 x_{0}+3 x_{1}-2 x_{0}^{\prime}-x_{1}^{\prime} \\
x^{\prime}(1) & =x_{1}^{\prime}=3 a+2 b+c & &
\end{aligned}
$$

Matrix form of spline

$$
\begin{gathered}
\mathbf{f}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} \\
{\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]} \\
\mathbf{f}(t)=b_{0}(t) \mathbf{p}_{0}+b_{1}(t) \mathbf{p}_{1}+b_{2}(t) \mathbf{p}_{2}+b_{3}(t) \mathbf{p}_{3}
\end{gathered}
$$

Matrix form of spline

$$
\begin{gathered}
\mathbf{f}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} \\
{\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]} \\
\mathbf{f}(t)=b_{0}(t) \mathbf{p}_{0}+b_{1}(t) \mathbf{p}_{1}+b_{2}(t) \mathbf{p}_{2}+b_{3}(t) \mathbf{p}_{3}
\end{gathered}
$$

Matrix form of spline

$$
\begin{gathered}
\mathbf{f}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} \\
{\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]} \\
\mathbf{f}(t)=b_{0}(t) \mathbf{p}_{0}+b_{1}(t) \mathbf{p}_{1}+b_{2}(t) \mathbf{p}_{2}+b_{3}(t) \mathbf{p}_{3}
\end{gathered}
$$

Hermite splines

- Matrix form is much simpler

$$
\mathbf{f}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{t}_{0} \\
\mathbf{t}_{1}
\end{array}\right]
$$

- coefficients = rows
- basis functions = columns
- note \mathbf{p} columns sum to $\left[\begin{array}{llll}0 & 0 & 0 & I\end{array}\right]^{\top}$

Hermite splines

- Hermite blending functions

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

- note derivative is defined as 3 times offset
- reason is illustrated by linear case

Hermite to Bézier

$$
\begin{aligned}
\mathbf{p}_{0} & =\mathbf{q}_{0} \\
\mathbf{p}_{1} & =\mathbf{q}_{3} \\
\mathbf{t}_{0} & =3\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
\mathbf{t}_{1} & =3\left(\mathbf{q}_{3}-\mathbf{q}_{2}\right)
\end{aligned}
$$

$$
\left[\begin{array}{c}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{v}_{0} \\
\mathbf{v}_{1}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right]
$$

Hermite to Bézier

$$
\begin{aligned}
\mathbf{p}_{0} & =\mathbf{q}_{0} \\
\mathbf{p}_{1} & =\mathbf{q}_{3} \\
\mathbf{t}_{0} & =3\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
\mathbf{t}_{1} & =3\left(\mathbf{q}_{3}-\mathbf{q}_{2}\right)
\end{aligned}
$$

$$
\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right]
$$

Hermite to Bézier

$$
\begin{aligned}
\mathbf{p}_{0} & =\mathbf{q}_{0} \\
\mathbf{p}_{1} & =\mathbf{q}_{3} \\
\mathbf{t}_{0} & =3\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
\mathbf{t}_{1} & =3\left(\mathbf{q}_{3}-\mathbf{q}_{2}\right)
\end{aligned}
$$

$$
\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right]
$$

Bézier matrix

$$
\mathbf{f}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]
$$

- note that these are the Bernstein polynomials

$$
b_{n, k}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}
$$

and that defines Bézier curves for any degree

Bézier basis

Another way to Bézier segments

- A really boring spline segment: $f(t)=p 0$
- it only has one control point
- the curve stays at that point for the whole time
- Only good for building a piecewise constant spline
- a.k.a. a set of points

Another way to Bézier segments

- A piecewise linear spline segment
- two control points per segment
- blend them with weights α and $\beta=1-\alpha$
- Good for building a piecewise linear spline
- a.k.a. a polygon or polyline

Another way to Bézier segments

- A piecewise linear spline segment
- two control points per segment
- blend them with weights α and $\beta=1-\alpha$
- Good for building a piecewise linear spline
- a.k.a. a polygon or polyline

Another way to Bézier segments

- A linear blend of two piecewise linear segments
- three control points now
- interpolate on both segments using α and β
- blend the results with the same weights
- makes a quadratic spline segment
- finally, a curve!

$$
\begin{aligned}
\mathbf{p}_{1,0} & =\alpha \mathbf{p}_{0}+\beta \mathbf{p}_{1} \\
\mathbf{p}_{1,1} & =\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2} \\
\mathbf{p}_{2,0} & =\alpha \mathbf{p}_{1,0}+\beta \mathbf{p}_{1,1} \\
& =\alpha \alpha \mathbf{p}_{0}+\alpha \beta \mathbf{p}_{1}+\beta \alpha \mathbf{p}_{1}+\beta \beta \mathbf{p}_{2} \\
& =\alpha^{2} \mathbf{p}_{0}+2 \alpha \beta \mathbf{p}_{1}+\beta^{2} \mathbf{p}_{2}
\end{aligned}
$$

Another way to Bézier segments

- Cubic segment: blend of two quadratic segments
- four control points now (overlapping sets of 3)
- interpolate on each quadratic using α and β
- blend the results with the same weights
- makes a cubic spline segment
- this is the familiar one for graphics-but you can keep going

$$
\begin{aligned}
\mathbf{p}_{3,0}= & \alpha \mathbf{p}_{2,0}+\beta \mathbf{p}_{2,1} \\
= & \alpha \alpha \alpha \mathbf{p}_{0}+\alpha \alpha \beta \mathbf{p}_{1}+\alpha \beta \alpha \mathbf{p}_{1}+\alpha \beta \beta \mathbf{p}_{2} \\
& \beta \alpha \alpha \mathbf{p}_{1}+\beta \alpha \beta \mathbf{p}_{2}+\beta \beta \alpha \mathbf{p}_{2}+\beta \beta \beta \mathbf{p}_{3} \\
= & \alpha^{3} \mathbf{p}_{0}+3 \alpha^{2} \beta \mathbf{p}_{1}+3 \alpha \beta^{2} \mathbf{p}_{2}+\beta^{3} \mathbf{p}_{3}
\end{aligned}
$$

de Casteljau's algorithm

- A recurrence for computing points on Bézier spline segments:

$$
\begin{aligned}
\mathbf{p}_{0, i} & =\mathbf{p}_{i} \\
\mathbf{p}_{n, i} & =\alpha \mathbf{p}_{n-1, i}+\beta \mathbf{p}_{n-1, i+1}
\end{aligned}
$$

- Cool additional feature: also subdivides the segment into two shorter ones

Cubic Bézier splines

- Very widely used type, especially in 2D
- e.g. it is a primitive in PostScript/PDF
- Can represent smooth curves with corners
- Nice de Casteljau recurrence for evaluation
- Can easily add points at any position
- Illustrator demo

Spline Curves

Chaining spline segments

- Can only do so much with a single polynomial
- Can use these functions as segments of a longer curve
- curve from $t=0$ to $t=I$ defined by first segment
- curve from $t=I$ to $t=2$ defined by second segment

$$
\mathbf{f}(t)=\mathbf{f}_{i}(t-i) \quad \text { for } i \leq t \leq i+1
$$

- To avoid discontinuity, match derivatives at junctions
- this produces a C^{1} curve

Trivial example: piecewise linear

- Basis function formulation:"function times point"
- basis functions: contribution of each point as t changes

- can think of them as blending functions glued together
- this is just like a reconstruction filter!

Trivial example: piecewise linear

- Basis function formulation:"function times point"
- basis functions: contribution of each point as t changes

- can think of them as blending functions glued together
- this is just like a reconstruction filter!

Splines as reconstruction

. 1

- 4

Splines as reconstruction

Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
- to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
- what are $x(t)$ and $y(t)$?
- then move one control straight up

Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
- to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
- what are $x(t)$ and $y(t)$?
- then move one control straight up

Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
- to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
- what are $x(t)$ and $y(t)$?
- then move one control straight up

Hermite splines

- Constraints are endpoints and endpoint tangents

$$
\mathbf{f}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 2 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{0}^{\prime} \\
\mathbf{p}_{1}^{\prime}
\end{array}\right]
$$

Hermite basis

Hermite basis

Hermite basis

Bézier basis

Chaining Bézier splines

- No continuity built in
- Achieve C^{1} using collinear control points

Chaining Bézier splines

- No continuity built in
- Achieve C^{1} using collinear control points

Continuity

- Smoothness can be described by degree of continuity
- zero-order $\left(C^{0}\right)$: position matches from both sides
- first-order $\left(C^{l}\right)$: tangent matches from both sides
- second-order $\left(C^{2}\right)$: curvature matches from both sides
$-G^{n}$ vs. C^{n}

Continuity

- Parametric continuity (C) of spline is continuity of coordinate functions
- Geometric continuity (G) is continuity of the curve itself
- Neither form of continuity is guaranteed by the other
- Can be C^{l} but not G^{l} when $\mathbf{p}(t)$ comes to a halt (next slide)
- Can be G^{l} but not C^{l} when the tangent vector changes length abruptly

Geometric vs. parametric continuity

coordinate function $y(t)$

Geometric vs. parametric continuity

coordinate function $y(t)$

Geometric vs. parametric continuity

coordinate function $y(t)$

Control

- Local control
- changing control point only affects a limited part of spline
- without this, splines are very difficult to use
- many likely formulations lack this
- natural spline
- polynomial fits

Control

- Convex hull property
- convex hull = smallest convex region containing points
- think of a rubber band around some pins
- some splines stay inside convex hull of control points
- make clipping, culling, picking, etc. simpler

YES

YES

YES

NO

Convex hull

- If basis functions are all positive, the spline has the convex hull property
- we're still requiring them to sum to I

- if any basis function is ever negative, no convex hull prop.
- proof: take the other three points at the same place

Affine invariance

- Transforming the control points is the same as transforming the curve
- true for all commonly used splines
- extremely convenient in practice...

Affine invariance

- Transforming the control points is the same as transforming the curve
- true for all commonly used splines
- extremely convenient in practice...

Affine invariance

- Transforming the control points is the same as transforming the curve
- true for all commonly used splines
- extremely convenient in practice...

Affine invariance

- Basis functions associated with points should always sum to I

$$
\begin{aligned}
\mathbf{p}(t) & =b_{0} \mathbf{p}_{0}+b_{1} \mathbf{p}_{1}+b_{2} \mathbf{v}_{0}+b_{3} \mathbf{v}_{1} \\
\mathbf{p}^{\prime}(t) & =b_{0}\left(\mathbf{p}_{0}+\mathbf{u}\right)+b_{1}\left(\mathbf{p}_{1}+\mathbf{u}\right)+b_{2} \mathbf{v}_{0}+b_{3} \mathbf{v}_{1} \\
& =b_{0} \mathbf{p}_{0}+b_{1} \mathbf{p}_{1}+b_{2} \mathbf{v}_{0}+b_{3} \mathbf{v}_{1}+\left(b_{0}+b_{1}\right) \mathbf{u} \\
& =\mathbf{p}(t)+\mathbf{u}
\end{aligned}
$$

Chaining spline segments

- Hermite curves are convenient because they can be made long easily
- Bézier curves are convenient because their controls are all points
- but it is fussy to maintain continuity constraints
- and they interpolate every 3rd point, which is a little odd
- We derived Bézier from Hermite by defining tangents from control points
- a similar construction leads to the interpolating Catmull-Rom spline

Hermite to Catmull-Rom

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
- use adjacent control points
- end tangents: extra points or zero

Hermite to Catmull-Rom

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
- use adjacent control points

- end tangents: extra points or zero

Hermite to Catmull-Rom

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
- use adjacent control points

- end tangents: extra points or zero

Hermite to Catmull-Rom

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
- use adjacent control points

Hermite to Catmull-Rom

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
- use adjacent control points

- end tangents: extra points or zero

Hermite to Catmull-Rom

- Have not yet seen any interpolating splines
- Would like to define tangents automatically
- use adjacent control points

Hermite to Catmull-Rom

- Tangents are $\left(\mathbf{p}_{k+1}-\mathbf{p}_{k-1}\right) / 2$
- scaling based on same argument about collinear case

$$
\mathbf{p}_{0}=\mathbf{q}_{k}
$$

$$
\mathbf{p}_{1}=\mathbf{q}_{k}+1
$$

$$
\mathbf{v}_{0}=0.5\left(\mathbf{q}_{k+1}-\mathbf{q}_{k-1}\right)
$$

$$
\mathbf{v}_{1}=0.5\left(\mathbf{q}_{k+2}-\mathbf{q}_{K}\right)
$$

$$
\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-.5 & 0 & .5 & 0 \\
0 & -.5 & 0 & .5
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{k-1} \\
\mathbf{q}_{k} \\
\mathbf{q}_{k+1} \\
\mathbf{q}_{k+2}
\end{array}\right]
$$

Catmull-Rom basis

Catmull-Rom basis

Catmull-Rom splines

- Our first example of an interpolating spline
- Like Bézier, equivalent to Hermite
- in fact, all splines of this form are equivalent
- First example of a spline based on just a control point sequence
- Does not have convex hull property

B-splines

- We may want more continuity than C^{\prime}
- We may not need an interpolating spline
- B-splines are a clean, flexible way of making long splines with arbitrary order of continuity
- Various ways to think of construction
- a simple one is convolution
- relationship to sampling and reconstruction

Cubic B-spline basis

Cubic B-spline basis

Deriving the B-Spline

- Approached from a different tack than Hermite-style constraints
- Want a cubic spline; therefore 4 active control points
- Want C^{2} continuity
- Turns out that is enough to determine everything

Efficient construction of any B-spline

- B-splines defined for all orders
- order d: degree d - I
- order d:d points contribute to value
- One definition: Cox-deBoor recurrence

$$
\begin{aligned}
& b_{1}= \begin{cases}1 & 0 \leq u<1 \\
0 & \text { otherwise }\end{cases} \\
& b_{d}=\frac{t}{d-1} b_{d-1}(t)+\frac{d-t}{d-1} b_{d-1}(t-1)
\end{aligned}
$$

B-spline construction, alternate view

- Recurrence
- ramp up/down
- Convolution
- smoothing of basis fn
- smoothing of curve

Cubic B-spline matrix

$$
\mathbf{f}_{i}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right] \cdot \frac{1}{6}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i-1} \\
\mathbf{p}_{i} \\
\mathbf{p}_{i+1} \\
\mathbf{p}_{i+2}
\end{array}\right]
$$

Converting spline representations

- All the splines we have seen so far are equivalent
- all represented by geometry matrices

$$
\mathbf{p}_{S}(t)=T(t) M_{S} P_{S}
$$

- where S represents the type of spline
- therefore the control points may be transformed from one type to another using matrix multiplication

$$
\begin{gathered}
P_{1}=M_{1}^{-1} M_{2} P_{2} \\
\mathbf{p}_{1}(t)=T(t) M_{1}\left(M_{1}^{-1} M_{2} P_{2}\right) \\
=T(t) M_{2} P_{2}=\mathbf{p}_{2}(t)
\end{gathered}
$$

Refinement of splines

- May want to add more control to a curve
- Can add control by splitting a segment into two

Refinement math

$$
\begin{aligned}
\mathbf{f}_{L}(t) & =T(s t) M P=T(t) S_{L} M P \\
& =T(t) M\left(M^{-1} S_{L} M P\right) \\
& =T(t) M P_{L}
\end{aligned}
$$

$$
\begin{aligned}
P_{L} & =M^{-1} S_{L} M P \\
P_{R} & =M^{-1} S_{R} M P
\end{aligned}
$$

$$
\begin{aligned}
& S_{L}=\left[\begin{array}{llll}
s^{3} & & & \\
& s^{2} & & \\
& & s & \\
& & & 1
\end{array}\right] \\
& S_{R}=\left[\begin{array}{cccc}
s^{3} & & \\
3 s^{2}(1-s) & s^{2} & \\
3 s(1-s)^{2} & 2 s(1-s) & s & \\
(1-s)^{3} & (1-s)^{2} & (1-s) & 1
\end{array}\right]
\end{aligned}
$$

Other types of B-splines

- Nonuniform B-splines
- discontinuities not evenly spaced
- allows control over continuity or interpolation at certain points
- e.g. interpolate endpoints (commonly used case)
- Nonuniform Rational B-splines (NURBS)
- ratios of nonuniform B-splines: $x(t) / w(t) ; y(t) / w(t)$
- key properties:
- invariance under perspective as well as affine
- ability to represent conic sections exactly

Evaluating splines for display

- Need to generate a list of line segments to draw
- generate efficiently
- use as few as possible
- guarantee approximation accuracy
- Approaches
- recursive subdivision (easy to do adaptively)
- uniform sampling (easy to do efficiently)

Evaluating by subdivision

- Recursively split spline
- stop when polygon is within epsilon of curve
- Termination criteria

- distance between control points
- distance of control points from line

Evaluating by subdivision

- Recursively split spline
- stop when polygon is within epsilon of curve
- Termination criteria

- distance between control points
- distance of control points from line

Evaluating with uniform spacing

- Forward differencing
- efficiently generate points for uniformly spaced t values
- evaluate polynomials using repeated differences

