
© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

2D Spline Curves

CS 4620 Lecture 18

1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Motivation: smoothness

• In many applications we need smooth shapes
– that is, without discontinuities

• So far we can make
– things with corners (lines, triangles, squares, rectangles, …)
– circles, ellipses, other special shapes (only get you so far!)

[B
oe
in
g]

2

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Classical approach

• Pencil-and-paper draftsmen also needed smooth curves
• Origin of “spline:” strip of flexible metal

– held in place by pegs or weights to constrain shape
– traced to produce smooth contour

3

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Translating into usable math

• Smoothness
– in drafting spline, comes from physical curvature minimization
– in CG spline, comes from choosing smooth functions

• usually low-order polynomials

• Control
– in drafting spline, comes from fixed pegs
– in CG spline, comes from user-specified control points

4

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Defining spline curves

• At the most general they are parametric curves

• For splines, f(t) is piecewise polynomial
– for this lecture, the discontinuities are at the integers

5

S = {f(t) | t 2 [0, N]}

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Defining spline curves

• At the most general they are parametric curves

• For splines, f(t) is piecewise polynomial
– for this lecture, the discontinuities are at the integers

5

S = {f(t) | t 2 [0, N]}

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Defining spline curves

• At the most general they are parametric curves

• For splines, f(t) is piecewise polynomial
– for this lecture, the discontinuities are at the integers

5

S = {f(t) | t 2 [0, N]}

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Defining spline curves

• At the most general they are parametric curves

• For splines, f(t) is piecewise polynomial
– for this lecture, the discontinuities are at the integers

5

S = {f(t) | t 2 [0, N]}

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Defining spline curves

• Generally f(t) is a piecewise polynomial
– for this lecture, the discontinuities are at the integers
– e.g., a cubic spline has the following form over [k, k + 1]:

– Coefficients are different for every interval

6

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Coordinate functions

7

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Coordinate functions

7

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Coordinate functions

7

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Coordinate functions

7

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Coordinate functions

8

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Coordinate functions

8

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Coordinate functions

8

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Coordinate functions

8

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Coordinate functions

8

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Control of spline curves

• Specified by a sequence of controls (points or vectors)
• Shape is guided by control points (aka control polygon)

– interpolating: passes through points
– approximating: merely guided by points

9

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Control of spline curves

• Specified by a sequence of controls (points or vectors)
• Shape is guided by control points (aka control polygon)

– interpolating: passes through points
– approximating: merely guided by points

9

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Control of spline curves

• Specified by a sequence of controls (points or vectors)
• Shape is guided by control points (aka control polygon)

– interpolating: passes through points
– approximating: merely guided by points

9

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Control of spline curves

• Specified by a sequence of controls (points or vectors)
• Shape is guided by control points (aka control polygon)

– interpolating: passes through points
– approximating: merely guided by points

9

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

How splines depend on their controls

• Each coordinate is separate
– the function x(t) is determined solely by the x coordinates of

the control points
– this means 1D, 2D, 3D, … curves are all really the same

• Spline curves are linear functions of their controls
– moving a control point two inches to the right moves x(t)

twice as far as moving it by one inch
– x(t), for fixed t, is a linear combination (weighted sum) of the

controls’ x coordinates
– f(t), for fixed t, is a linear combination (weighted sum) of the

controls

10

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Plan
1. Spline segments

– how to define a polynomial on [0,1]
– …that has the properties you want
– …and is easy to control

2. Spline curves
– how to chain together lots of segments
– …so that the whole curve has the properties you want
– …and is easy to control

3. Refinement and evaluation
– how to add detail to splines
– how to approximate them with line segments

11

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Spline Segments

12

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Trivial example: piecewise linear

• This spline is just a polygon
– control points are the vertices

• But we can derive it anyway as an illustration
• Each interval will be a linear function

– x(t) = at + b
– constraints are values at endpoints

– b = x0 ; a = x1 – x0

– this is linear interpolation

13

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Trivial example: piecewise linear

• Vector formulation

• Matrix formulation

14

f(t) =
⇥
t 1

⇤ �1 1
1 0

�
p0

p1

�

x(t) = (x1 � x0)t+ x0

y(t) = (y1 � y0)t+ y0

f(t) = (p1 � p0)t+ p0

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Trivial example: piecewise linear

• Basis function formulation
– regroup expression by p rather than t

– interpretation in matrix viewpoint

15

f(t) = (p1 � p0)t+ p0

= (1� t)p0 + tp1

f(t) =

✓⇥
t 1

⇤ �1 1
1 0

�◆
p0

p1

�

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Trivial example: piecewise linear

• Vector blending formulation: “average of points”
– blending functions: contribution of each point as t changes

16

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite splines

• Less trivial example
• Form of curve: piecewise cubic
• Constraints: endpoints and tangents (derivatives)

17

t0

p1

p0

t1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite splines

• Solve constraints to find coefficients

18

x(t) = at

3 + bt

2 + ct+ d

x

0(t) = 3at2 + 2bt+ c

x(0) = x0 = d

x(1) = x1 = a+ b+ c+ d

x

0(0) = x

0
0 = c

x

0(1) = x

0
1 = 3a+ 2b+ c

d = x0

c = x

0
0

a = 2x0 � 2x1 + x

0
0 + x

0
1

b = �3x0 + 3x1 � 2x0
0 � x

0
1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Matrix form of spline

19

⇥
t3 t2 t 1

⇤

2

664

⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥

3

775

2

664

p0

p1

p2

p3

3

775

f(t) = b0(t)p0 + b1(t)p1 + b2(t)p2 + b3(t)p3

f(t) = at3 + bt2 + ct+ d

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Matrix form of spline

19

⇥
t3 t2 t 1

⇤

2

664

⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥

3

775

2

664

p0

p1

p2

p3

3

775

f(t) = b0(t)p0 + b1(t)p1 + b2(t)p2 + b3(t)p3

f(t) = at3 + bt2 + ct+ d

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Matrix form of spline

19

⇥
t3 t2 t 1

⇤

2

664

⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥

3

775

2

664

p0

p1

p2

p3

3

775

f(t) = b0(t)p0 + b1(t)p1 + b2(t)p2 + b3(t)p3

f(t) = at3 + bt2 + ct+ d

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite splines

• Matrix form is much simpler

– coefficients = rows
– basis functions = columns

• note p columns sum to [0 0 0 1]T

20

f(t) =
⇥
t3 t2 t 1

⇤

2

664

2 �2 1 1
�3 3 �2 �1
0 0 1 0
1 0 0 0

3

775

2

664

p0

p1

t0
t1

3

775

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite splines

• Hermite blending functions

21

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite to Bézier

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

22

p0

t0

p1

t1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite to Bézier

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

22

p0

t0

p1

– t1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite to Bézier

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

22

p0

t0

p1

– t1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite to Bézier

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

– note derivative is defined as 3 times offset
• reason is illustrated by linear case

22

p0

t0

p1

– t1

q0

q1 q2

q3

I’m calling these
points q just for
this slide and the
next one.

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite to Bézier

23

p0

t0

p1

– t1

q0

q1 q2

q3

p0 = q0

p1 = q3

t0 = 3(q1 � q0)

t1 = 3(q3 � q2)

2

664

p0

p1

v0

v1

3

775 =

2

664

1 0 0 0
0 0 0 1
�3 3 0 0
0 0 �3 3

3

775

2

664

q0

q1

q2

q3

3

775

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite to Bézier

23

p0

t0

p1

– t1

q0

q1 q2

q3

p0 = q0

p1 = q3

t0 = 3(q1 � q0)

t1 = 3(q3 � q2)

2

664

a
b
c
d

3

775 =

2

664

2 �2 1 1
�3 3 �2 �1
0 0 1 0
1 0 0 0

3

775

2

664

1 0 0 0
0 0 0 1
�3 3 0 0
0 0 �3 3

3

775

2

664

q0

q1

q2

q3

3

775

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite to Bézier

23

p0

t0

p1

– t1

q0

q1 q2

q3

p0 = q0

p1 = q3

t0 = 3(q1 � q0)

t1 = 3(q3 � q2)

2

664

a
b
c
d

3

775 =

2

664

�1 3 �3 1
3 �6 3 0
�3 3 0 0
1 0 0 0

3

775

2

664

q0

q1

q2

q3

3

775

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Bézier matrix

– note that these are the Bernstein polynomials

	
 	

	
 and that defines Bézier curves for any degree

24

f(t) =
⇥
t3 t2 t 1

⇤

2

664

�1 3 �3 1
3 �6 3 0
�3 3 0 0
1 0 0 0

3

775

2

664

p0

p1

p2

p3

3

775

bn,k(t) =

✓
n

k

◆
tk(1� t)n�k

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Bézier basis

25

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Another way to Bézier segments

• A really boring spline segment: f(t) = p0
– it only has one control point
– the curve stays at that point for the whole time

• Only good for building a piecewise constant spline
– a.k.a. a set of points

26

p0

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Another way to Bézier segments

• A piecewise linear spline segment
– two control points per segment
– blend them with weights α and β = 1 – α

• Good for building a
piecewise linear spline
– a.k.a. a polygon or polyline

27

Ơ

ơ

p0

Ơp0 + ơp1

p1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Another way to Bézier segments

• A piecewise linear spline segment
– two control points per segment
– blend them with weights α and β = 1 – α

• Good for building a
piecewise linear spline
– a.k.a. a polygon or polyline

27

Ơ

ơ

p0

Ơp0 + ơp1

p1

These labels show
the weights, not
the distances.

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Another way to Bézier segments

• A linear blend of two piecewise linear segments
– three control points now
– interpolate on both segments using α and β
– blend the results with the same weights

• makes a quadratic spline segment
– finally, a curve!

28

p1,0 = ↵p0 + �p1

p1,1 = ↵p1 + �p2

p2,0 = ↵p1,0 + �p1,1

= ↵↵p0 + ↵�p1 + �↵p1 + ��p2

= ↵2p0 + 2↵�p1 + �2p2

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18 29

Ơ

Ơ

Ơ

ơ

ơ

ơ

Ơ2p0 + 2Ơơp1 + ơ2p1

p0

p2

p1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Another way to Bézier segments

• Cubic segment: blend of two quadratic segments
– four control points now (overlapping sets of 3)
– interpolate on each quadratic using α and β
– blend the results with the same weights

• makes a cubic spline segment
– this is the familiar one for graphics—but you can keep going

30

p3,0 =↵p2,0 + �p2,1

=↵↵↵p0 + ↵↵�p1 + ↵�↵p1 + ↵��p2

�↵↵p1 + �↵�p2 + ��↵p2 + ���p3

=↵3p0 + 3↵2�p1 + 3↵�2p2 + �3p3

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18 31

Ơ

Ơ Ơ

Ơ
Ơ

Ơ

ơ

ơ

ơ

ơơ

Ơ3p0 + 3Ơ2ơp1 + 3Ơơ2p2 + ơ3p3

p0

p2

p3

p1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

de Casteljau’s algorithm

• A recurrence for computing points on Bézier spline
segments:

• Cool additional feature:
also subdivides
the segment into two
shorter ones

[F
vD
FH
]

32

p0,i = pi

pn,i = ↵pn�1,i + �pn�1,i+1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Cubic Bézier splines

• Very widely used type, especially in 2D
– e.g. it is a primitive in PostScript/PDF

• Can represent smooth curves with corners
• Nice de Casteljau recurrence for evaluation
• Can easily add points at any position
• Illustrator demo

33

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Spline Curves

34

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Chaining spline segments

• Can only do so much with a single polynomial
• Can use these functions as segments of a longer curve

– curve from t = 0 to t = 1 defined by first segment
– curve from t = 1 to t = 2 defined by second segment

• To avoid discontinuity, match derivatives at junctions
– this produces a C1 curve

35

f(t) = fi(t� i) for i t i+ 1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Trivial example: piecewise linear

• Basis function formulation: “function times point”
– basis functions: contribution of each point as t changes

– can think of them as blending functions glued together
– this is just like a reconstruction filter!

36

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Trivial example: piecewise linear

• Basis function formulation: “function times point”
– basis functions: contribution of each point as t changes

– can think of them as blending functions glued together
– this is just like a reconstruction filter!

36

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Splines as reconstruction

37

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Splines as reconstruction

37

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Seeing the basis functions

• Basis functions of a spline are revealed by how the
curve changes in response to a change in one control
– to get a graph of the basis function, start with the curve laid

out in a straight, constant-speed line
• what are x(t) and y(t)?

– then move one control straight up

38

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Seeing the basis functions

• Basis functions of a spline are revealed by how the
curve changes in response to a change in one control
– to get a graph of the basis function, start with the curve laid

out in a straight, constant-speed line
• what are x(t) and y(t)?

– then move one control straight up

38

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Seeing the basis functions

• Basis functions of a spline are revealed by how the
curve changes in response to a change in one control
– to get a graph of the basis function, start with the curve laid

out in a straight, constant-speed line
• what are x(t) and y(t)?

– then move one control straight up

38

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite splines

• Constraints are endpoints

 and endpoint tangents

39

f(t) =
⇥
t3 t2 t 1

⇤

2

664

2 �2 1 2
�3 3 �2 �1
0 0 1 0
1 0 0 0

3

775

2

664

p0

p1

p0
0

p0
1

3

775

ti

pi+1

pi

ti+1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite basis

40

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite basis

40

0
0 1

1
p1

t0

p0

t1

ti

pi+1

pi

ti+1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite basis

40

0

1

i i + 1i – 1 i + 2

pi+1

ti

pi

ti+1

ti

pi+1

pi

ti+1

pi–1

ti–1 ti+2 pi+2

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Bézier basis

41

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Chaining Bézier splines

• No continuity built in
• Achieve C1 using collinear control points

42

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Chaining Bézier splines

• No continuity built in
• Achieve C1 using collinear control points

42

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Continuity

• Smoothness can be described by degree of continuity
– zero-order (C0): position matches from both sides

– first-order (C1): tangent matches from both sides

– second-order (C2): curvature matches from both sides

– Gn vs. Cn

zero order first order second order

43

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Continuity

• Parametric continuity (C) of spline is continuity of
coordinate functions

• Geometric continuity (G) is continuity of the curve
itself

• Neither form of continuity is guaranteed by the other
– Can be C1 but not G1 when p(t) comes to a halt (next slide)

– Can be G1 but not C1 when the tangent vector changes length
abruptly

44

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Geometric vs. parametric continuity

45

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Geometric vs. parametric continuity

45

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Geometric vs. parametric continuity

45

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Control

• Local control
– changing control point only affects a limited part of spline
– without this, splines are very difficult to use
– many likely formulations lack this

• natural spline
• polynomial fits

46

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Control

• Convex hull property
– convex hull = smallest convex region containing points

• think of a rubber band around some pins
– some splines stay inside convex hull of control points

• make clipping, culling, picking, etc. simpler

YES YES YES NO

47

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Convex hull

• If basis functions are all positive, the spline has the
convex hull property
– we’re still requiring them to sum to 1

– if any basis function is ever negative, no convex hull prop.
• proof: take the other three points at the same place

48

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Affine invariance

• Transforming the control points is the same as
transforming the curve
– true for all commonly used splines
– extremely convenient in practice…

49

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Affine invariance

• Transforming the control points is the same as
transforming the curve
– true for all commonly used splines
– extremely convenient in practice…

49

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Affine invariance

• Transforming the control points is the same as
transforming the curve
– true for all commonly used splines
– extremely convenient in practice…

49

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Affine invariance

• Basis functions associated with points should always
sum to 1

50

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Chaining spline segments

• Hermite curves are convenient because they can be
made long easily

• Bézier curves are convenient because their controls
are all points
– but it is fussy to maintain continuity constraints
– and they interpolate every 3rd point, which is a little odd

• We derived Bézier from Hermite by defining tangents
from control points
– a similar construction leads to the interpolating Catmull-Rom

spline

51

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

52

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

52

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

52

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

52

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

52

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

52

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Hermite to Catmull-Rom

• Tangents are (pk + 1 – pk – 1) / 2

– scaling based on same argument about collinear case

53

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Catmull-Rom basis

54

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Catmull-Rom basis

54

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Catmull-Rom splines

• Our first example of an interpolating spline
• Like Bézier, equivalent to Hermite

– in fact, all splines of this form are equivalent

• First example of a spline based on just a control point
sequence

• Does not have convex hull property

55

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

B-splines

• We may want more continuity than C1

• We may not need an interpolating spline
• B-splines are a clean, flexible way of making long splines

with arbitrary order of continuity
• Various ways to think of construction

– a simple one is convolution
– relationship to sampling and reconstruction

56

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Cubic B-spline basis

57

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Cubic B-spline basis

57

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Deriving the B-Spline

• Approached from a different tack than Hermite-style
constraints
– Want a cubic spline; therefore 4 active control points

– Want C2 continuity
– Turns out that is enough to determine everything

58

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Efficient construction of any B-spline

• B-splines defined for all orders
– order d: degree d – 1
– order d: d points contribute to value

• One definition: Cox-deBoor recurrence

59

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

B-spline construction, alternate view

• Recurrence
– ramp up/down

• Convolution
– smoothing of basis fn
– smoothing of curve

60

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Cubic B-spline matrix

61

fi(t) =
⇥
t3 t2 t 1

⇤
· 1
6

2

664

�1 3 �3 1
3 �6 3 0
�3 0 3 0
1 4 1 0

3

775

2

664

pi�1

pi

pi+1

pi+2

3

775

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Converting spline representations

• All the splines we have seen so far are equivalent
– all represented by geometry matrices

• where S represents the type of spline
– therefore the control points may be transformed from one

type to another using matrix multiplication

62

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Refinement of splines

• May want to add more control to a curve
• Can add control by splitting a segment into two

63

s

0p0

p1

p2

p3

p3

p0

p1
p2

p0

p1
p2

p31

find left and right control points
to make the curves match!

f(t) = T (t)MP

fL(t) = f(st) = T (t)MPL

fR(t) = f((1� s)t+ s) = T (t)MPR

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Refinement math

64

SL =

2

664

s3

s2

s
1

3

775

SR =

2

664

s3

3s2(1� s) s2

3s(1� s)2 2s(1� s) s
(1� s)3 (1� s)2 (1� s) 1

3

775

fL(t) = T (st)MP = T (t)SLMP

= T (t)M(M�1SLMP)

= T (t)MPL

PL = M�1SLMP

PR = M�1SRMP

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Other types of B-splines

• Nonuniform B-splines
– discontinuities not evenly spaced
– allows control over continuity or interpolation at certain

points
– e.g. interpolate endpoints (commonly used case)

• Nonuniform Rational B-splines (NURBS)
– ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)
– key properties:

• invariance under perspective as well as affine
• ability to represent conic sections exactly

65

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Evaluating splines for display

• Need to generate a list of line segments to draw
– generate efficiently
– use as few as possible
– guarantee approximation accuracy

• Approaches
– recursive subdivision (easy to do adaptively)
– uniform sampling (easy to do efficiently)

66

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Evaluating by subdivision

– Recursively split spline
• stop when polygon is

within epsilon of curve
– Termination criteria

• distance between control points
• distance of control points from line

p1

p2

p3

p4

[F
vD
FH
]

67

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Evaluating by subdivision

– Recursively split spline
• stop when polygon is

within epsilon of curve
– Termination criteria

• distance between control points
• distance of control points from line

p1

p2

p3

p4

[F
vD
FH
]

67

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 18

Evaluating with uniform spacing

• Forward differencing
– efficiently generate points for uniformly spaced t values
– evaluate polynomials using repeated differences

68

