
© 2014 Steve Marschner •
(with previous instructors James/Bala, and some slides courtesy Leonard McMillan)

Cornell CS4620/5620 Fall 2014 • Lecture 17

Antialiasing & Compositing

CS4620 Lecture 17

1

© 2014 Steve Marschner •
(with previous instructors James/Bala, and some slides courtesy Leonard McMillan)

Cornell CS4620/5620 Fall 2014 • Lecture 17 2

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Pixel coverage

• Antialiasing and compositing both deal with questions
of pixels that contain unresolved detail

• Antialiasing: how to carefully throw away the detail
• Compositing: how to account for the detail when

combining images

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Aliasing

continuous image defined
by ray tracing procedure

continuous image defined
by a bunch of black rectangles

point sampling a
continuous image:

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Antialiasing

• A name for techniques to prevent aliasing
• In image generation, we need to filter

– Boils down to averaging the image over an area
– Weight by a filter

• Methods depend on source of image
– Rasterization (lines and polygons)
– Point sampling (e.g. raytracing)
– Texture mapping

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Rasterizing lines

• Define line as a
rectangle

• Specify by two
endpoints

• Ideal image: black
inside, white outside

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Rasterizing lines

• Define line as a
rectangle

• Specify by two
endpoints

• Ideal image: black
inside, white outside

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Point sampling

• Approximate
rectangle by
drawing all pixels
whose centers fall
within the line

• Problem: all-or-
nothing leads to
jaggies
– this is sampling with

no filter (aka. point
sampling)

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Point sampling

• Approximate
rectangle by
drawing all pixels
whose centers fall
within the line

• Problem: all-or-
nothing leads to
jaggies
– this is sampling with

no filter (aka. point
sampling)

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Point sampling
in action

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Aliasing

• Point sampling is fast and simple
• But the lines have stair steps and variations in width
• This is an aliasing phenomenon

– Sharp edges of line contain high frequencies

• Introduces features to image that are not
supposed to be there!

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Antialiasing

• Point sampling makes an all-or-nothing choice in each
pixel
– therefore steps are inevitable when the choice changes
– yet another example where discontinuities are bad

• On bitmap devices this is necessary
– hence high resolutions required
– 600+ dpi in laser printers to make aliasing invisible

• On continuous-tone devices we can do better

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Antialiasing

• Basic idea: replace “is
the image black at
the pixel center?”
with “how much is
pixel covered by
black?”

• Replace yes/no
question with
quantitative
question.

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Box filtering

• Pixel intensity is proportional to area of overlap with
square pixel area

• Also called “unweighted area averaging”

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Box filtering by supersampling

• Compute coverage
fraction by counting
subpixels

• Simple, accurate
• But slow

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Box filtering
in action

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Weighted filtering

• Box filtering problem: treats area near edge same as
area near center
– results in pixel turning on “too abruptly”

• Alternative: weight area by a smooth function
– unweighted averaging corresponds to using a box function
– a gaussian is a popular choice of smooth filter
– important property: normalization (unit integral)

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Weighted filtering by supersampling

• Compute filtering
integral by summing
filter values for
covered subpixels

• Simple, accurate
• But really slow

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Weighted filtering by supersampling

• Compute filtering
integral by summing
filter values for
covered subpixels

• Simple, accurate
• But really slow

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Gaussian filtering
in action

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Filter comparison

Point sampling Box filtering Gaussian filtering

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Antialiasing in ray tracing

aliased image

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Antialiasing in ray tracing

aliased image

one sample per pixel

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Antialiasing in ray tracing

antialiased image

four samples per pixel

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Antialiasing in ray tracing

one sample/pixel 9 samples/pixel

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

// one sample per pixel
for iy = 0 to (ny-1) by 1
 for ix = 0 to (nx-1) by 1 {
 ray = camera.getRay(ix, iy);
 image.set(ix, iy, trace(ray));
 }

// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
 for ix = 0 to (nx-1) by 1 {
 Color sum = 0;
 for dx = -(ns-1)/2 to (ns-1)/2 by 1
 for dy = -(ns-1)/2 to (ns-1)/2 by
1 {
 x = ix + dx / ns;
 y = iy + dy / ns;
 ray = camera.getRay(x, y);
 sum += trace(ray);
 }
 image.set(ix, iy, sum / (ns*ns));
 }

Details of supersampling

• For image coordinates with integer pixel centers:

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Details of supersampling

• For image coordinates in unit square

// one sample per pixel
for iy = 0 to (ny-1) by 1
 for ix = 0 to (nx-1) by 1 {
 double x = (ix + 0.5) / nx;
 double y = (iy + 0.5) / ny;
 ray = camera.getRay(x, y);
 image.set(ix, iy, trace(ray));
 }

// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
 for ix = 0 to (nx-1) by 1 {
 Color sum = 0;
 for dx = 0 to (ns-1) by 1
 for dy = 0 to (ns-1) by 1 {
 x = (ix + (dx + 0.5) / ns) / nx;
 y = (iy + (dy + 0.5) / ns) / ny;
 ray = camera.getRay(x, y);
 sum += trace(ray);
 }
 image.set(ix, iy, sum / (ns*ns));
 }

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Supersampling vs. multisampling

• Supersampling is terribly expensive
• GPUs use an approximation called multisampling

– Compute one shading value per pixel
– Store it at many subpixel samples, each with its own depth

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Multisample rasterization

• Each fragment carries several (color,depth) samples
– shading is computed per-fragment
– depth test is resolved per-sample
– final color is average of sample colors

[h
tt

p:
//w

w
w

.le
ar

no
pe

ng
l.c

om
]

single-
sample

multi-
sample

http://www.learnopengl.com
http://www.learnopengl.com

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Antialiasing in textures

• Even with multisampling, we still only evaluate textures
once per fragment

• Need to filter the texture somehow!
– perspective produces very high image frequencies
– (will return to this topic later, time permitting)

© 2014 Steve Marschner •
(with previous instructors James/Bala, and some slides courtesy Leonard McMillan)

Cornell CS4620/5620 Fall 2014 • Lecture 17

Compositing

28

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Compositing

[T
ita

ni
c

; D
ig

ita
lD

om
ai

n;
 v

fx
hq

.c
om

]

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Combining images

• Often useful combine elements of several images
• Trivial example: video crossfade

– smooth transition from one scene to another

– note: weights sum to 1.0
• no unexpected brightening or darkening
• no out-of-range results

– this is linear interpolation

A B t = 0

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Combining images

• Often useful combine elements of several images
• Trivial example: video crossfade

– smooth transition from one scene to another

– note: weights sum to 1.0
• no unexpected brightening or darkening
• no out-of-range results

– this is linear interpolation

A B t = 0t = .3

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Combining images

• Often useful combine elements of several images
• Trivial example: video crossfade

– smooth transition from one scene to another

– note: weights sum to 1.0
• no unexpected brightening or darkening
• no out-of-range results

– this is linear interpolation

A B t = 0t = .3t = .6

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Combining images

• Often useful combine elements of several images
• Trivial example: video crossfade

– smooth transition from one scene to another

– note: weights sum to 1.0
• no unexpected brightening or darkening
• no out-of-range results

– this is linear interpolation

A B t = 0t = .3t = .6t = .8

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Combining images

• Often useful combine elements of several images
• Trivial example: video crossfade

– smooth transition from one scene to another

– note: weights sum to 1.0
• no unexpected brightening or darkening
• no out-of-range results

– this is linear interpolation

A B t = 0t = .3t = .6t = .8t = 1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Foreground and background

• In many cases just adding is not enough
• Example: compositing in film production

– shoot foreground and background separately
– also include CG elements
– this kind of thing has been done in analog for decades
– how should we do it digitally?

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Foreground and background

• How we compute new image varies with position

• Therefore, need to store some kind of tag to say what
parts of the image are of interest

use foreground

use background

[C
hu

an
g

et
 a

l.
/ C

or
el

]

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Binary image mask

• First idea: store one bit per pixel
– answers question “is this pixel part of the foreground?”

– causes jaggies similar to point-sampled rasterization
– same problem, same solution: intermediate values

[C
hu

an
g

et
 a

l.
/ C

or
el

]

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Binary image mask

• First idea: store one bit per pixel
– answers question “is this pixel part of the foreground?”

– causes jaggies similar to point-sampled rasterization
– same problem, same solution: intermediate values

[C
hu

an
g

et
 a

l.
/ C

or
el

]

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Binary image mask

• First idea: store one bit per pixel
– answers question “is this pixel part of the foreground?”

– causes jaggies similar to point-sampled rasterization
– same problem, same solution: intermediate values

[C
hu

an
g

et
 a

l.
/ C

or
el

]

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Partial pixel coverage

• The problem: pixels near boundary are not strictly
foreground or background

– how to represent this simply?
– interpolate boundary pixels between the fg. and bg. colors

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Alpha compositing

• Formalized in 1984 by Porter & Duff
• Store fraction of pixel covered, called α

– this exactly like a spatially varying crossfade

• Convenient implementation
– 8 more bits makes 32
– 2 multiplies + 1 add per pixel for compositing

A covers
area α

B shows
through
area (1 − α)

E = A over B

rE = ↵ArA + (1� ↵A)rB

gE = ↵AgA + (1� ↵A)gB

bE = ↵AbA + (1� ↵A)bB

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Alpha compositing—example
[C

hu
an

g
et

 a
l.

/ C
or

el
]

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Alpha compositing—example
[C

hu
an

g
et

 a
l.

/ C
or

el
]

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Alpha compositing—example
[C

hu
an

g
et

 a
l.

/ C
or

el
]

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Compositing composites

• so far have only considered single fg. over single bg.
• in real applications we have n layers

– Titanic example
– compositing foregrounds to create new foregrounds

• what to do with α?

• desirable property: associativity

– to make this work we need to be careful about how α is
computed

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Compositing composites

• Some pixels are partly covered in more than one layer

– in D = A over (B over C) what will be the result?

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Compositing composites

• Some pixels are partly covered in more than one layer

– in D = A over (B over C) what will be the result?

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Compositing composites

• Some pixels are partly covered in more than one layer

– in D = A over (B over C) what will be the result?

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Compositing composites

• Some pixels are partly covered in more than one layer

– in D = A over (B over C) what will be the result?

Fraction covered by neither A nor B

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Associativity?

• What does this imply about (A over B)?
– Coverage has to be

– …but the color values then don’t come out nicely
in D = (A over B) over C:

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

An optimization

• Compositing equation again

• Note cA appears only in the product αAcA

– so why not do the multiplication ahead of time?

• Leads to premultiplied alpha:
– store pixel value (r’, g’, b’, α) where c’ = αc

– E = A over B becomes

– this turns out to be more than an optimization…
– hint: so far the background has been opaque!

cE = ↵AcA + (1� ↵A)cB

c0E = c0A + (1� ↵A)c
0
B

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Compositing composites

• What about just E = A over B (with B transparent)?

– in premultiplied alpha, the result

looks just like blending colors, and it leads to associativity.

↵E = ↵A + (1� ↵A)↵B

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Associativity!

– This is another good reason to premultiply

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Independent coverage assumption

• Why is it reasonable to blend α like a color?
• Simplifying assumption: covered areas are independent

– that is, uncorrelated in the statistical sense

[P
or

te
r

&
 D

uf
f 8

4]

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Independent coverage assumption

• Holds in most but not all cases

• This will cause artifacts
– but we’ll carry on anyway because it is simple and usually

works…

this not this or this

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Alpha compositing—failures

positive correlation:
too much foreground negative correlation:

too little foreground

[C
hu

an
g

et
 a

l.
/ C

or
el

]
[C

or
ne

ll
PC

G
]

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

[P
or

te
r

&
 D

uf
f 8

4]

Other compositing operations

• Generalized form of
compositing equation:

A

B

A or 0

0

A or B or 0

B or 0

1 x 2 x 3 x 2 = 12 reasonable choices

↵E = A op B

c0E = FAc
0
A + FBc

0
B

