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Pixel coverage

• Antialiasing and compositing both deal with questions 
of pixels that contain unresolved detail

• Antialiasing: how to carefully throw away the detail
• Compositing: how to account for the detail when 

combining images
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Aliasing

continuous image defined
by ray tracing procedure

continuous image defined
by a bunch of black rectangles

point sampling a
continuous image:
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Antialiasing

• A name for techniques to prevent aliasing
• In image generation, we need to filter

– Boils down to averaging the image over an area
– Weight by a filter

• Methods depend on source of image
– Rasterization (lines and polygons)
– Point sampling (e.g. raytracing)
– Texture mapping
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Rasterizing lines

• Define line as a 
rectangle

• Specify by two 
endpoints

• Ideal image: black 
inside, white outside
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Rasterizing lines

• Define line as a 
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• Specify by two 
endpoints
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Point sampling

• Approximate 
rectangle by 
drawing all pixels 
whose centers fall 
within the line

• Problem: all-or-
nothing leads to 
jaggies
– this is sampling with 

no filter (aka. point 
sampling)
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Point sampling
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Point sampling
in action
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Aliasing

• Point sampling is fast and simple
• But the lines have stair steps and variations in width
• This is an aliasing phenomenon

– Sharp edges of line contain high frequencies

• Introduces features to image that are not
supposed to be there!
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Antialiasing

• Point sampling makes an all-or-nothing choice in each 
pixel
– therefore steps are inevitable when the choice changes
– yet another example where discontinuities are bad

• On bitmap devices this is necessary
– hence high resolutions required
– 600+ dpi in laser printers to make aliasing invisible

• On continuous-tone devices we can do better
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Antialiasing

• Basic idea: replace “is 
the image black at 
the pixel center?” 
with “how much is 
pixel covered by 
black?”

• Replace yes/no 
question with 
quantitative 
question.
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Box filtering

• Pixel intensity is proportional to area of overlap with 
square pixel area

• Also called “unweighted area averaging” 
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Box filtering by supersampling

• Compute coverage 
fraction by counting 
subpixels

• Simple, accurate
• But slow
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Box filtering
in action
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Weighted filtering

• Box filtering problem: treats area near edge same as 
area near center
– results in pixel turning on “too abruptly”

• Alternative: weight area by a smooth function
– unweighted averaging corresponds to using a box function
– a gaussian is a popular choice of smooth filter
– important property: normalization (unit integral)
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Weighted filtering by supersampling

• Compute filtering 
integral by summing 
filter values for 
covered subpixels

• Simple, accurate
• But really slow
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Weighted filtering by supersampling

• Compute filtering 
integral by summing 
filter values for 
covered subpixels

• Simple, accurate
• But really slow
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Gaussian filtering
in action
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Filter comparison

Point sampling Box filtering Gaussian filtering
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Antialiasing in ray tracing

aliased image
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Antialiasing in ray tracing

aliased image

one sample per pixel
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Antialiasing in ray tracing

antialiased image

four samples per pixel
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Antialiasing in ray tracing

one sample/pixel 9 samples/pixel
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// one sample per pixel
for iy = 0 to (ny-1) by 1
   for ix = 0 to (nx-1) by 1 {
      ray = camera.getRay(ix, iy);
      image.set(ix, iy, trace(ray));
   }

// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
   for ix = 0 to (nx-1) by 1 {
      Color sum = 0;
      for dx = -(ns-1)/2 to (ns-1)/2 by 1
         for dy = -(ns-1)/2 to (ns-1)/2 by 
1 {
            x = ix + dx / ns;
            y = iy + dy / ns; 
            ray = camera.getRay(x, y);
            sum += trace(ray);
         }
      image.set(ix, iy, sum / (ns*ns));
   }
         

Details of supersampling

• For image coordinates with integer pixel centers:
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Details of supersampling

• For image coordinates in unit square

// one sample per pixel
for iy = 0 to (ny-1) by 1
   for ix = 0 to (nx-1) by 1 {
      double x = (ix + 0.5) / nx;
      double y = (iy + 0.5) / ny;
      ray = camera.getRay(x, y);
      image.set(ix, iy, trace(ray));
   }

// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
   for ix = 0 to (nx-1) by 1 {
      Color sum = 0;
      for dx = 0 to (ns-1) by 1
         for dy = 0 to (ns-1) by 1 {
            x = (ix + (dx + 0.5) / ns) / nx;
            y = (iy + (dy + 0.5) / ns) / ny; 
            ray = camera.getRay(x, y);
            sum += trace(ray);
         }
      image.set(ix, iy, sum / (ns*ns));
   }
         



© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 17

Supersampling vs. multisampling

• Supersampling is terribly expensive
• GPUs use an approximation called multisampling

– Compute one shading value per pixel
– Store it at many subpixel samples, each with its own depth
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Multisample rasterization

• Each fragment carries several (color,depth) samples
– shading is computed per-fragment
– depth test is resolved per-sample
– final color is average of sample colors
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Antialiasing in textures

• Even with multisampling, we still only evaluate textures 
once per fragment

• Need to filter the texture somehow!
– perspective produces very high image frequencies
– (will return to this topic later, time permitting)
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Compositing

28
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Compositing
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Combining images

• Often useful combine elements of several images
• Trivial example: video crossfade

– smooth transition from one scene to another

– note: weights sum to 1.0
• no unexpected brightening or darkening
• no out-of-range results

– this is linear interpolation

A B t = 0
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Combining images

• Often useful combine elements of several images
• Trivial example: video crossfade

– smooth transition from one scene to another

– note: weights sum to 1.0
• no unexpected brightening or darkening
• no out-of-range results

– this is linear interpolation

A B t = 0t = .3
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Combining images

• Often useful combine elements of several images
• Trivial example: video crossfade

– smooth transition from one scene to another

– note: weights sum to 1.0
• no unexpected brightening or darkening
• no out-of-range results

– this is linear interpolation

A B t = 0t = .3t = .6
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Combining images

• Often useful combine elements of several images
• Trivial example: video crossfade

– smooth transition from one scene to another

– note: weights sum to 1.0
• no unexpected brightening or darkening
• no out-of-range results

– this is linear interpolation

A B t = 0t = .3t = .6t = .8
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Combining images

• Often useful combine elements of several images
• Trivial example: video crossfade

– smooth transition from one scene to another

– note: weights sum to 1.0
• no unexpected brightening or darkening
• no out-of-range results

– this is linear interpolation

A B t = 0t = .3t = .6t = .8t = 1
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Foreground and background

• In many cases just adding is not enough
• Example: compositing in film production

– shoot foreground and background separately
– also include CG elements
– this kind of thing has been done in analog for decades
– how should we do it digitally?
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Foreground and background

• How we compute new image varies with position

• Therefore, need to store some kind of tag to say what 
parts of the image are of interest

use foreground

use background
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Binary image mask

• First idea: store one bit per pixel
– answers question “is this pixel part of the foreground?”

– causes jaggies similar to point-sampled rasterization
– same problem, same solution: intermediate values
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Binary image mask

• First idea: store one bit per pixel
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Partial pixel coverage

• The problem: pixels near boundary are not strictly 
foreground or background

– how to represent this simply?
– interpolate boundary pixels between the fg. and bg. colors
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Alpha compositing

• Formalized in 1984 by Porter & Duff
• Store fraction of pixel covered, called α

– this exactly like a spatially varying crossfade

• Convenient implementation
– 8 more bits makes 32
– 2 multiplies + 1 add per pixel for compositing

A covers
area α

B shows
through
area (1 − α)

E = A over B

rE = ↵ArA + (1� ↵A)rB

gE = ↵AgA + (1� ↵A)gB

bE = ↵AbA + (1� ↵A)bB
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Alpha compositing—example
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Compositing composites

• so far have only considered single fg. over single bg.
• in real applications we have n layers

– Titanic example
– compositing foregrounds to create new foregrounds

• what to do with α?

• desirable property: associativity

– to make this work we need to be careful about how α is 
computed
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Compositing composites

• Some pixels are partly covered in more than one layer

– in D = A over (B over C) what will be the result?
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Compositing composites

• Some pixels are partly covered in more than one layer

– in D = A over (B over C) what will be the result?

Fraction covered by neither A nor B
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Associativity?

• What does this imply about (A over B)?
– Coverage has to be

– …but the color values then don’t come out nicely
in D = (A over B) over C:
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An optimization

• Compositing equation again

• Note cA appears only in the product αAcA

– so why not do the multiplication ahead of time?

• Leads to premultiplied alpha:
– store pixel value (r’, g’, b’, α) where c’ = αc

– E = A over B becomes

– this turns out to be more than an optimization…
– hint: so far the background has been opaque!

cE = ↵AcA + (1� ↵A)cB

c0E = c0A + (1� ↵A)c
0
B
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Compositing composites

• What about just E = A over B (with B transparent)?

– in premultiplied alpha, the result

looks just like blending colors, and it leads to associativity.

↵E = ↵A + (1� ↵A)↵B
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Associativity!

– This is another good reason to premultiply
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Independent coverage assumption

• Why is it reasonable to blend α like a color?
• Simplifying assumption: covered areas are independent

– that is, uncorrelated in the statistical sense
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Independent coverage assumption

• Holds in most but not all cases

• This will cause artifacts
– but we’ll carry on anyway because it is simple and usually 

works…

this not this or this
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Alpha compositing—failures

positive correlation:
too much foreground negative correlation:

too little foreground
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Other compositing operations

• Generalized form of 
compositing equation:

A

B

A or 0

0

A or B or 0

B or 0

1 x 2 x 3 x 2 = 12 reasonable choices

↵E = A op B

c0E = FAc
0
A + FBc

0
B


