Antialiasing \& Compositing

CS4620 Lecture 17

Pixel coverage

- Antialiasing and compositing both deal with questions of pixels that contain unresolved detail
- Antialiasing: how to carefully throw away the detail
- Compositing: how to account for the detail when combining images

Aliasing

point sampling a continuous image:
continuous image defined by ray tracing procedure

continuous image defined by a bunch of black rectangles

Antialiasing

- A name for techniques to prevent aliasing
- In image generation, we need to filter
- Boils down to averaging the image over an area
- Weight by a filter
- Methods depend on source of image
- Rasterization (lines and polygons)
- Point sampling (e.g. raytracing)
- Texture mapping

Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside

-	-	-	*	-	-	-	-	-	-	-	-	-	-	
-	-	-	*	-	-	*	*	*	-	*	-	*	-	
-	-	-	-	-	-	-	-	-	-	-	*	-	-	
-	*	*	-	-	-	-	-	-	-	-				
-	-	\bullet	-	-	-	-	-	-			-	-	-	
-	-	-	-	-	-			-	-	*	-	-	-	
-	-	-				-	-	-	-	-	-	-	-	
-	-		-	-	-	-	-	θ	-	-	*	-	-	
-	-	*	-	-	-	-	-	-	-	*	*	*	\bullet	
-	*	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside

*	-	-	-	-	-	-	*	-	-	-	-	-	*
-	-	-	-	-	-	-	-	-	-	*	-	-	e
-	-	*	-	-	0	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-			
-	-	-	-	-	-	*	-					-	-
-	-	-	-	-					-	-	-	-	©
-	-						-	-	-	-	-	-	-
-	-			-	-	-	*	-	-	-	*	-	e
-	-	-	-	-	*	-	-	-	-	-	-	-	-
-	-	-	-	-	*	*	-	-	-	-	*	*	-
-	-	\bullet	-	-	-	-	-	-	-	-	-	*	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-

Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: all-ornothing leads to jaggies
- this is sampling with no filter (aka. point sampling)

-	-	-	-	*	*	-	*	-	*	-	-	-	-	
*	-	-	-	-	-	-	-	-	-	-	-	-	θ	
-	-	-	-	-	θ	-	-	-	-	-	-	-		
-	*	-	-	-	-	-	-	*	-	e				
-	-	-	-	-	-	-	-					-	-	
*	-	-	-	*					-	-	-	-	*	
-	-						-	-	-	-	-	*	θ	
-	-			-	-	*	-	-	-	-	-	*	*	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
*	-	-	-	-	-	*	-	-	-	*	-	*	-	
\bullet	*	-	-	-	-	-	-	-	-	-	-	*	*	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: all-ornothing leads to jaggies
- this is sampling with no filter (aka. point sampling)

© 2014 Steve Marschner •

Aliasing

- Point sampling is fast and simple
- But the lines have stair steps and variations in width
- This is an aliasing phenomenon
- Sharp edges of line contain high frequencies
- Introduces features to image that are not supposed to be there!

Antialiasing

- Point sampling makes an all-or-nothing choice in each pixel
- therefore steps are inevitable when the choice changes
- yet another example where discontinuities are bad
- On bitmap devices this is necessary
- hence high resolutions required
- 600+ dpi in laser printers to make aliasing invisible
- On continuous-tone devices we can do better

Antialiasing

- Basic idea: replace"is the image black at the pixel center?" with "how much is pixel covered by black?"
- Replace yes/no question with quantitative question.

*	-	-	*	*	*	-	-	-	-	-	-	-	-	
-	-	-	*	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	*	-	-	-	-	-	-			
-	*	-	*	-	-	-	-	-	-					
-	-	-	-	*	-	-						-	-	
-	-	-	-	-						-	-	-	*	
-	-						-	-	-	-	-	-	-	
-				-	-	-	*	-	-	-	*	-	-	
-	-	*	*	*	-	-	-	-	-	-	-	-	*	
-	-	-	-	-	*	-	-	-	-	*	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	e	-	-	-	e	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Box filtering

- Pixel intensity is proportional to area of overlap with square pixel area
- Also called "unweighted area averaging"

Box filtering by supersampling

- Compute coverage fraction by counting subpixels
- Simple, accurate
- But slow

Box filtering in action

Weighted filtering

- Box filtering problem: treats area near edge same as area near center
- results in pixel turning on "too abruptly"
- Alternative: weight area by a smooth function
- unweighted averaging corresponds to using a box function
- a gaussian is a popular choice of smooth filter
- important property: normalization (unit integral)

Weighted filtering by supersampling

- Compute filtering integral by summing filter values for covered subpixels
- Simple, accurate
- But really slow

-	-	-	*	*	*	-	*	-	-	*	-	-	*	
-	-	-	*	-	-	-	-	-	-	-	-	-	*	
-	-	-	-	\bullet	-	-	-	\bullet	\bullet	-	-	-		
-	-	-	*	-	-	-	-	-	-			-		
-	-	-	-	-		雨:	-		-	-		-	-	
-	-	-	-	*					-	-	-	-	e	
-	-	-		\cdots			-	-	-	-	-	-	-	
-	-			-	-	-	-	-	-	-	*	*	*	
-	-	-	-	-	-	-	-	-	\bullet	-	-	-	*	
*	-	-	-	-	*	-	-	-	-	*	-	*	-	
-	-	-	-	-	-	-	-	\bullet	θ	-	-	-	-	
-	e	-	-	\bullet	*	-	-	-	-	-	-	-	e	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	\bullet	*	-	-	*	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	*	-	-	-	

Weighted filtering by supersampling

- Compute filtering integral by summing filter values for covered subpixels
- Simple, accurate
- But really slow

-	-	-	*	*	*	-	*	-	-	*	-	-	*	
-	-	-	*	-	-	-	-	-	-	-	-	-	*	
-	-	*	-	\bullet	-	-	-	-	\bullet	-	-	-		
-	-	-	*	-	-	-	-	-	-			-		
-	-	-	-	-		$\stackrel{\square}{\square}$				-		-	-	
-	-	-	-	*					-	-	-	-	e	
-	-	-		\cdots			-	-	-	-	-	-	-	
-	-			-	*	-	-	-	-	-	*	*	*	
-	-	-	*	-	-	-	-	-	\bullet	-	-	-	-	
-	-	-	-	-	*	-	-	-	-	*	-	*	-	
-	-	\bullet	-	-	-	\bullet	-	\bullet	θ	-	-	-	-	
-	e	-	-	\bullet	*	*	-	-	-	-	-	-	e	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	\bullet	*	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	*	-	-	-	

Filter comparison

Point sampling

Box filtering

Gaussian filtering

Antialiasing in ray tracing

Antialiasing in ray tracing

Antialiasing in ray tracing

four samples per pixel

Antialiasing in ray tracing

one sample/pixel

9 samples/pixel

Details of supersampling

- For image coordinates with integer pixel centers:
// one sample per pixel for iy $=0$ to (ny-1) by 1
for ix $=0$ to ($n x-1$) by 1 \{ ray = camera.getRay(ix, iy); image.set(ix, iy, trace(ray)); \}


```
// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
    for ix = 0 to (nx-1) by 1 {
    Color sum = 0;
    for dx = -(ns-1)/2 to (ns-1)/2 by 1
        for dy = -(ns-1)/2 to (ns-1)/2 by
```

1 \{
$x=i x+d x / n s ;$
$y=i y+d y / n s ;$
$x=i x+d x / n s ;$
$y=i y+d y / n s ;$
ray = camera.getRay (x, y);
sum += trace(ray);
\}
image.set(ix, iy, sum / (ns*ns));
\}

Details of supersampling

- For image coordinates in unit square
// one sample per pixel for iy $=0$ to (ny-1) by 1
for $\mathrm{ix}=0$ to $(\mathrm{nx}-1)$ by 1 \{ double $x=(i x+0.5) / n x$; double $\mathrm{y}=(\mathrm{iy}+0.5) / \mathrm{ny}$; ray $=$ camera.getRay(x, y); image.set(ix, iy, trace(ray)); \}

```
// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
    for ix = 0 to (nx-1) by 1 {
    Color sum = 0;
    for dx = 0 to (ns-1) by 1
        for dy = 0 to (ns-1) by 1 {
            x = (ix + (dx + 0.5)/ns)/nx;
            y = (iy + (dy + 0.5)/ns)/ny;
            ray = camera.getRay(x, y);
            sum += trace(ray);
        }
    image.set(ix, iy, sum / (ns*ns));
}
```


Supersampling vs. multisampling

- Supersampling is terribly expensive
- GPUs use an approximation called multisampling
- Compute one shading value per pixel
- Store it at many subpixel samples, each with its own depth

Multisample rasterization

- Each fragment carries several (color,depth) samples
- shading is computed per-fragment
- depth test is resolved per-sample
- final color is average of sample colors

Antialiasing in textures

- Even with multisampling, we still only evaluate textures once per fragment
- Need to filter the texture somehow!
- perspective produces very high image frequencies
- (will return to this topic later, time permitting)

Compositing

Compositing

Combining images

- Often useful combine elements of several images
- Trivial example: video crossfade
- smooth transition from one scene to another

$$
\begin{aligned}
& r_{C}=t r_{A}+(1-t) r_{B} \\
& g_{C}=t g_{A}+(1-t) g_{B} \\
& b_{C}=t b_{A}+(1-t) b_{B}
\end{aligned}
$$

- note: weights sum to 1.0
- no unexpected brightening or darkening
- no out-of-range results
- this is linear interpolation

Combining images

- Often useful combine elements of several images
- Trivial example: video crossfade
- smooth transition from one scene to another

$$
\begin{aligned}
& r_{C}=t r_{A}+(1-t) r_{B} \\
& g_{C}=t g_{A}+(1-t) g_{B} \\
& b_{C}=t b_{A}+(1-t) b_{B}
\end{aligned}
$$

- note: weights sum to 1.0
- no unexpected brightening or darkening
- no out-of-range results
- this is linear interpolation

Combining images

- Often useful combine elements of several images
- Trivial example: video crossfade
- smooth transition from one scene to another

$$
\begin{aligned}
& r_{C}=t r_{A}+(1-t) r_{B} \\
& g_{C}=t g_{A}+(1-t) g_{B} \\
& b_{C}=t b_{A}+(1-t) b_{B}
\end{aligned}
$$

- note: weights sum to 1.0
- no unexpected brightening or darkening
- no out-of-range results
- this is linear interpolation

Combining images

- Often useful combine elements of several images
- Trivial example: video crossfade
- smooth transition from one scene to another

$$
\begin{aligned}
& r_{C}=t r_{A}+(1-t) r_{B} \\
& g_{C}=t g_{A}+(1-t) g_{B} \\
& b_{C}=t b_{A}+(1-t) b_{B}
\end{aligned}
$$

- note: weights sum to 1.0
- no unexpected brightening or darkening
- no out-of-range results
- this is linear interpolation

Combining images

- Often useful combine elements of several images
- Trivial example: video crossfade
- smooth transition from one scene to another

$$
\begin{aligned}
& r_{C}=t r_{A}+(1-t) r_{B} \\
& g_{C}=t g_{A}+(1-t) g_{B} \\
& b_{C}=t b_{A}+(1-t) b_{B}
\end{aligned}
$$

- note: weights sum to 1.0
- no unexpected brightening or darkening
- no out-of-range results
- this is linear interpolation

Foreground and background

- In many cases just adding is not enough
- Example: compositing in film production
- shoot foreground and background separately
- also include CG elements
- this kind of thing has been done in analog for decades
- how should we do it digitally?

Foreground and background

- How we compute new image varies with position

- Therefore, need to store some kind of tag to say what parts of the image are of interest

Binary image mask

- First idea: store one bit per pixel
- answers question "is this pixel part of the foreground?"

- causes jaggies similar to point-sampled rasterization
- same problem, same solution: intermediate values

Binary image mask

- First idea: store one bit per pixel
- answers question "is this pixel part of the foreground?"

- causes jaggies similar to point-sampled rasterization
- same problem, same solution: intermediate values

Binary image mask

- First idea: store one bit per pixel
- answers question "is this pixel part of the foreground?"

- causes jaggies similar to point-sampled rasterization
- same problem, same solution: intermediate values

Partial pixel coverage

- The problem: pixels near boundary are not strictly foreground or background

- how to represent this simply?
- interpolate boundary pixels between the fg. and bg. colors

Alpha compositing

- Formalized in 1984 by Porter \& Duff
- Store fraction of pixel covered, called α

$$
\begin{gathered}
E=A \text { over } B \\
r_{E}=\alpha_{A} r_{A}+\left(1-\alpha_{A}\right) r_{B} \\
g_{E}=\alpha_{A} g_{A}+\left(1-\alpha_{A}\right) g_{B} \\
b_{E}=\alpha_{A} b_{A}+\left(1-\alpha_{A}\right) b_{B}
\end{gathered}
$$

- this exactly like a spatially varying crossfade
- Convenient implementation
- 8 more bits makes 32
- 2 multiplies + 1 add per pixel for compositing

Alpha compositing-example

Alpha compositing-example

Alpha compositing-example

Compositing composites

- so far have only considered single fg. over single bg.
- in real applications we have n layers
- Titanic example
- compositing foregrounds to create new foregrounds
- what to do with α ?
- desirable property: associativity

$$
A \text { over }(B \text { over } C)=(A \text { over } B) \text { over } C
$$

- to make this work we need to be careful about how α is computed

Compositing composites

- Some pixels are partly covered in more than one layer

- in $D=A$ over (B over C) what will be the result?

$$
\begin{aligned}
c_{D} & =\alpha_{A} c_{A}+\left(1-\alpha_{A}\right)\left[\alpha_{B} c_{B}+\left(1-\alpha_{B}\right) c_{C}\right] \\
& =\alpha_{A} c_{A}+\left(1-\alpha_{A}\right) \alpha_{B} c_{B}+\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right) c_{C}
\end{aligned}
$$

Compositing composites

- Some pixels are partly covered in more than one layer

- in $D=A$ over (B over C) what will be the result?

$$
\begin{aligned}
c_{D} & =\alpha_{A} c_{A}+\left(1-\alpha_{A}\right)\left[\alpha_{B} c_{B}+\left(1-\alpha_{B}\right) c_{C}\right] \\
& =\alpha_{A} c_{A}+\left(1-\alpha_{A}\right) \alpha_{B} c_{B}+\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right) c_{C}
\end{aligned}
$$

Compositing composites

- Some pixels are partly covered in more than one layer

- in $D=A$ over (B over C) what will be the result?

$$
\begin{aligned}
c_{D} & =\alpha_{A} c_{A}+\left(1-\alpha_{A}\right)\left[\alpha_{B} c_{B}+\left(1-\alpha_{B}\right) c_{C}\right] \\
& =\alpha_{A} c_{A}+\left(1-\alpha_{A}\right) \alpha_{B} c_{B}+\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right) c_{C}
\end{aligned}
$$

Compositing composites

- Some pixels are partly covered in more than one layer

- in $D=A$ over (B over C) what will be the result?

$$
\begin{aligned}
c_{D} & =\alpha_{A} c_{A}+\left(1-\alpha_{A}\right)\left[\alpha_{B} c_{B}+\left(1-\alpha_{B}\right) c_{C}\right] \\
& =\alpha_{A} c_{A}+\left(1-\alpha_{A}\right) \alpha_{B} c_{B}+\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right) c_{C}
\end{aligned}
$$

Fraction covered by neither A nor B

Associativity?

- What does this imply about (A over B)?
- Coverage has to be

$$
\begin{aligned}
\alpha_{(A \text { over } B)} & =1-\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right) \\
& =\alpha_{A}+\left(1-\alpha_{A}\right) \alpha_{B}
\end{aligned}
$$

- ...but the color values then don't come out nicely in $D=(A$ over $B)$ over C :

$$
\begin{aligned}
c_{D} & =\alpha_{A} c_{A}+\left(1-\alpha_{A}\right) \alpha_{B} c_{B}+\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right) c_{C} \\
& =\alpha_{(A \text { over } B)}(\cdots)+\left(1-\alpha_{(A \text { over } B)}\right) c_{C}
\end{aligned}
$$

An optimization

- Compositing equation again

$$
c_{E}=\alpha_{A} c_{A}+\left(1-\alpha_{A}\right) c_{B}
$$

- Note c_{A} appears only in the product $\alpha_{A} c_{A}$
- so why not do the multiplication ahead of time?
- Leads to premultiplied alpha:
- store pixel value ($r^{\prime}, g^{\prime}, b^{\prime}, \alpha$) where $c^{\prime}=\alpha c$
- E = A over B becomes

$$
c_{E}^{\prime}=c_{A}^{\prime}+\left(1-\alpha_{A}\right) c_{B}^{\prime}
$$

- this turns out to be more than an optimization...
- hint: so far the background has been opaque!

Compositing composites

- What about just $E=A$ over B (with B transparent)?

- in premultiplied alpha, the result

$$
\alpha_{E}=\alpha_{A}+\left(1-\alpha_{A}\right) \alpha_{B}
$$

looks just like blending colors, and it leads to associativity.

Associativity!

$$
\begin{aligned}
c_{D} & =c_{A}^{\prime}+\left(1-\alpha_{A}\right)\left[c_{B}^{\prime}+\left(1-\alpha_{B}\right) c_{C}^{\prime}\right] \\
& =\left[c_{A}^{\prime}+\left(1-\alpha_{A}\right) c_{B}^{\prime}\right]+\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right) c_{C}^{\prime} \\
& =c_{(A \text { over } B)}^{\prime}+\left(1-\alpha_{(A \text { over } B)}\right) c_{C}^{\prime}
\end{aligned}
$$

- This is another good reason to premultiply

Independent coverage assumption

- Why is it reasonable to blend α like a color?
- Simplifying assumption: covered areas are independent
- that is, uncorrelated in the statistical sense

description	area
$\bar{A} \bigcap \overline{\bar{B}}$	$\left(\mathbf{1}-\alpha_{A}\right)\left(\mathbf{1}-\alpha_{B}\right)$
$A \bigcap \bar{B}$	$\alpha_{A}\left(\mathbf{1}-\alpha_{B}\right)$
$\bar{A} \bigcap^{B}$	$\left(\mathbf{1}-\alpha_{A}\right) \alpha_{B}$
$A \cap B$	$\alpha_{A} \alpha_{B}$

Independent coverage assumption

- Holds in most but not all cases

this

not this

or this
- This will cause artifacts
- but we'll carry on anyway because it is simple and usually works...

Alpha compositing-failures

positive correlation: too much foreground

negative correlation: too little foreground

Other compositing operations

- Generalized form of compositing equation:

$$
\begin{aligned}
\alpha_{E} & =A \mathbf{o p} B \\
c_{E}^{\prime} & =F_{A} c_{A}^{\prime}+F_{B} c_{B}^{\prime}
\end{aligned}
$$

$1 \times 2 \times 3 \times 2=12$ reasonable choices

operation	guadruple	diagram	F_{A}	F_{B}
clear	$(0,0,0,0)$		0	0
A	($0, A, 0, A$)		1	0
B	$(0,0, B, B)$		0	1
A over B	($0, A, B, A$)		1	$1-\alpha_{A}$
B over A	($0, \mathrm{~A}, \mathrm{~B}, \mathrm{~B}$)		$1-\alpha_{B}$	1
A in B	$(0,0,0, A)$		α_{B}	0
$B \ln A$	$(0,0,0, B)$		0	α_{A}
A out B	(0,A, 0,0)		${ }^{1-\alpha_{g}}$	0
B out A	(0,0,B,0)		0	${ }^{1-\alpha_{A}}$
A atop B	($0,0, B, A$)		σ_{B}	${ }^{1-o_{A}}$
B atop A	($0, A, 0, B$)		${ }^{1-\alpha_{B}}$	a_{A}
A xor B	($0, A, B, 0$)		${ }^{1-\alpha_{B}}$	${ }^{1-\alpha_{A}}$

