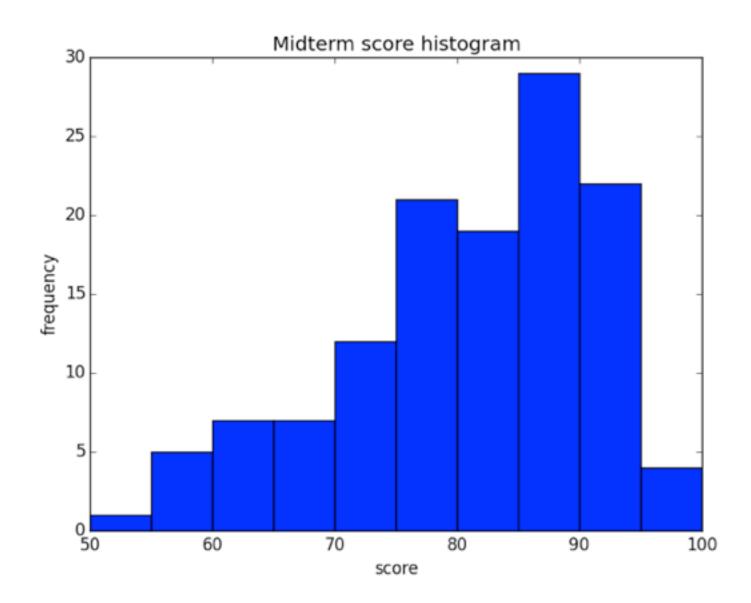
Antialiasing & Compositing

CS4620 Lecture 17

Cornell CS4620/5620 Fall 2014 • Lecture 17

© 2014 Steve Marschner • 1 (with previous instructors James/Bala, and some slides courtesy Leonard McMillan)



Pixel coverage

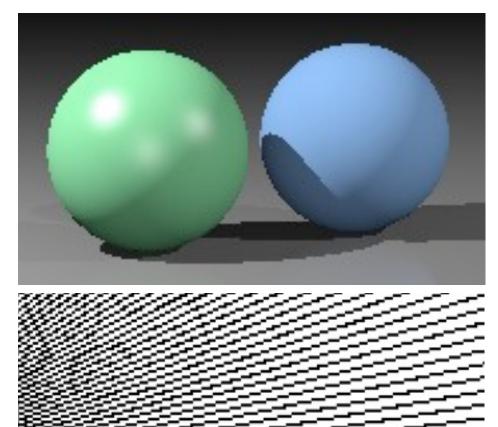
- Antialiasing and compositing both deal with questions of pixels that contain unresolved detail
- Antialiasing: how to carefully throw away the detail
- Compositing: how to account for the detail when combining images

Aliasing

point sampling a continuous image:

continuous image defined by ray tracing procedure

continuous image defined by a bunch of black rectangles



Cornell CS4620 Fall 2014 • Lecture 17

Antialiasing

- A name for techniques to prevent aliasing
- In image generation, we need to filter
 - Boils down to averaging the image over an area
 - Weight by a filter
- Methods depend on source of image
 - Rasterization (lines and polygons)
 - Point sampling (e.g. raytracing)
 - Texture mapping

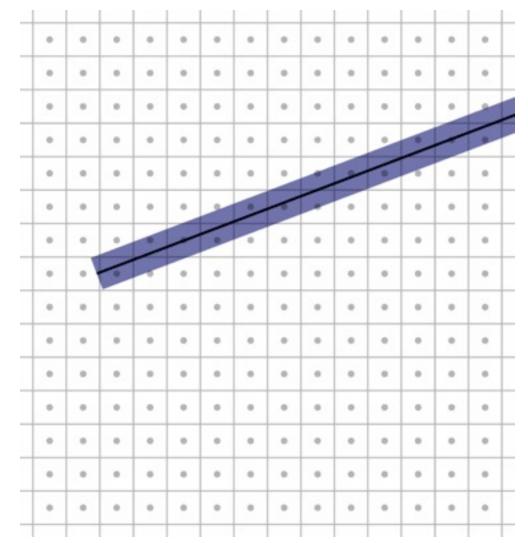
Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside

0			•										
0								0					
	0	0	0	0	•	0	۰	0	•		0	•	
•					•	•	•				•	_	
•		0		0		.0		•	~	0			
0	•		•	•	•	•	-	•			0		
0			-	/	•	0							
•		-	•			0							
0								0	0	0			0
•						0		0					
0	0			0		0		0	0				0
•													
0	0		0	0		.0	0			0			
0	0			0				•			0	0	

Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside



Point sampling

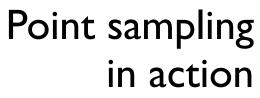
- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: all-ornothing leads to jaggies
 - this is sampling with no filter (aka. point sampling)

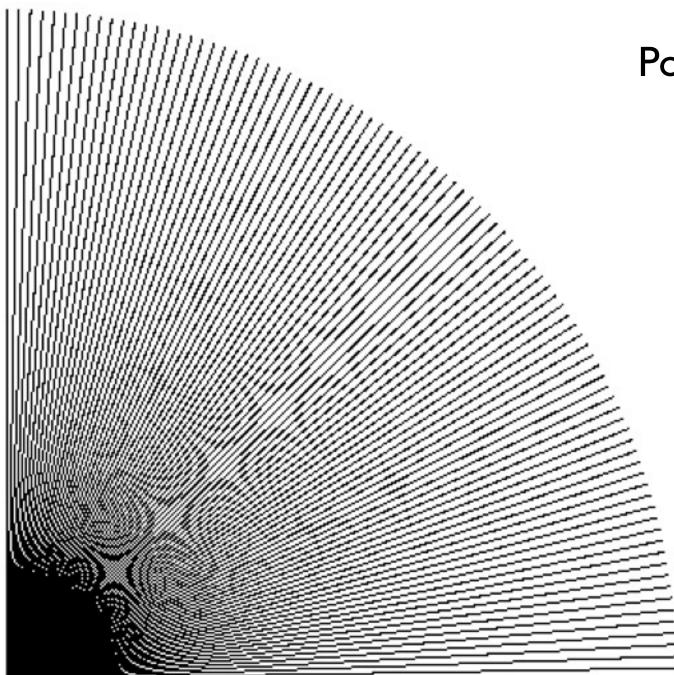
			-		_								-
0	0					0							0
0		0	0	•				0		0			0
							+						-
•	0					0	•	0	•		•	~	
.0	0	. 0		0		.0			-		0	•	
				•			-		•				
	•		•	~	•			•	. 0				0
٠		•	-			0	•			0			0
			0										0
								0					0
													0
			0	0		0	0			0	0	0	.0
	0			0		0	0	0	•	0	0	0	0

Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: all-ornothing leads to jaggies
 - this is sampling with no filter (aka. point sampling)

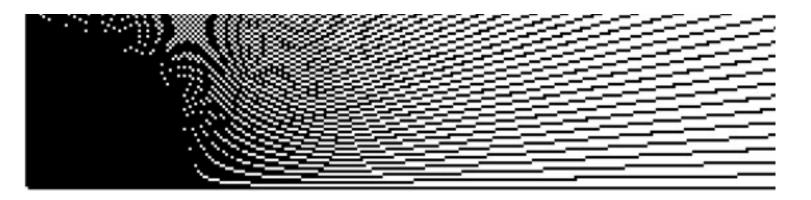
													_
0	0						.0						0
0								0					0
							+				+		0
•	0	0				0		0					
.0		. 0		0		.0					.0	0	
				0								0	0
•	. 0	.0				0			. 0			0	0
٠	0		0		+	0		0		0		0	0
						0				0		0	0
												0	0
					0							0	0
												0	
	0	0	0	0	0	0		0	. 0	0	0	0	.0
•	0			0		0	0	0	•	0	0	0	•
			0		0	0	0						





Aliasing

- Point sampling is fast and simple
- But the lines have stair steps and variations in width
- This is an aliasing phenomenon
 - Sharp edges of line contain high frequencies
- Introduces features to image that are not supposed to be there!



Antialiasing

- Point sampling makes an all-or-nothing choice in each pixel
 - therefore steps are inevitable when the choice changes
 - yet another example where discontinuities are bad
- On bitmap devices this is necessary
 - hence high resolutions required
 - 600+ dpi in laser printers to make aliasing invisible
- On continuous-tone devices we can do better

Antialiasing

- Basic idea: replace "is the image black at the pixel center?" with "how much is pixel covered by black?"
- Replace yes/no question with quantitative question.

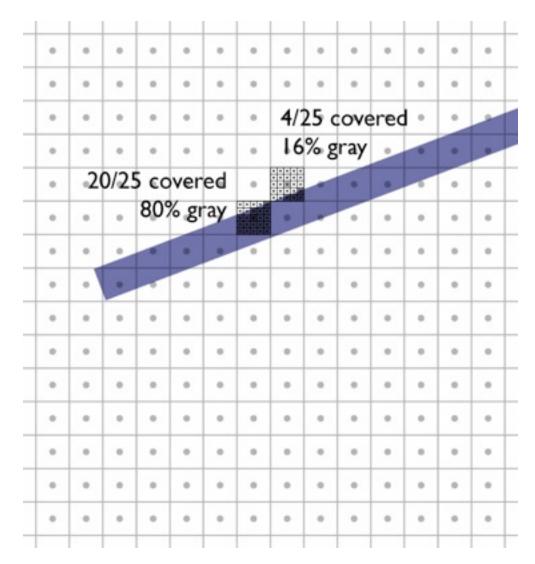
0	0		•				•	•				•	0
0												0	0
0	0	0		0		0		0	0	0			~
0	0		•	0		0	•	0	•		0		2
0		. 0	•	0	•	.0	0	/	•	•	~	•	
0		0		0	2	-	•	-	0				
0		0	0		-	0	•		.0		0	0	•
0	• [-	0	+	0	•	0	0	0	0		
			0	0		0		0	0	0		0	0
	0	0		0				0		0		0	0
	0				0				0			0	
	. 0	0	. 0						0			0	
	0	0	0	0	0	0	0	0	0	0	0	0	.0
0	.0	0		0	0	0	0	0	0	0	0	0	0
0	0	.0	0		0	0	0		0		0	0	0

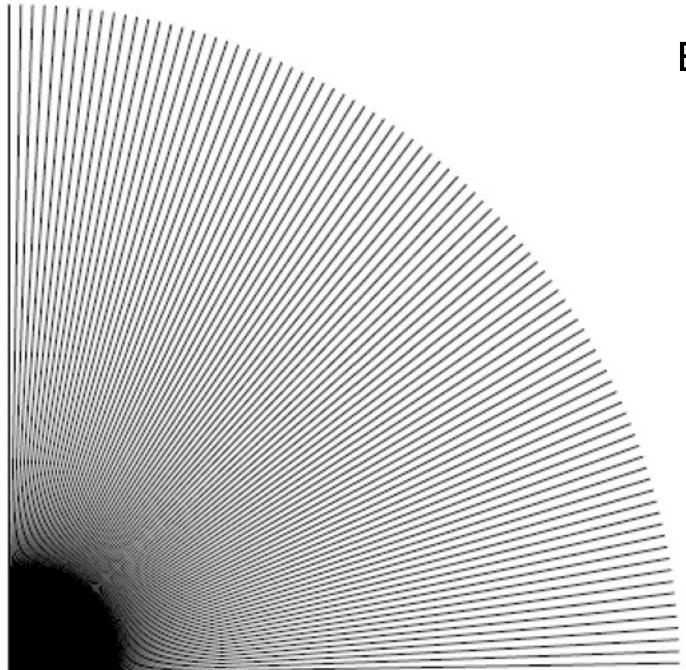
Box filtering

- Pixel intensity is proportional to area of overlap with square pixel area
- Also called "unweighted area averaging"

Box filtering by supersampling

- Compute coverage fraction by counting subpixels
- Simple, accurate
- But slow



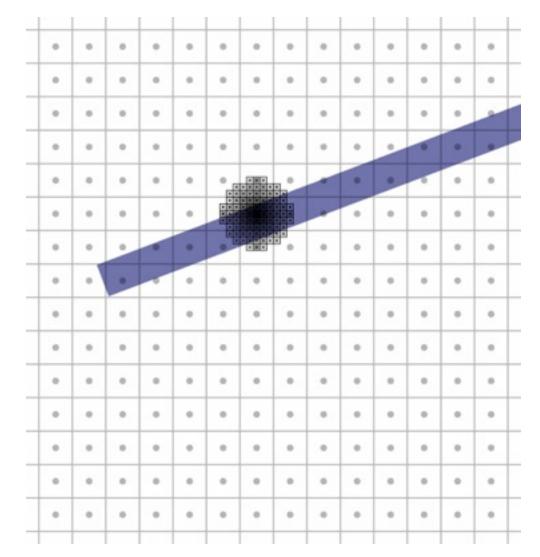


Weighted filtering

- Box filtering problem: treats area near edge same as area near center
 - results in pixel turning on "too abruptly"
- Alternative: weight area by a smooth function
 - unweighted averaging corresponds to using a box function
 - a gaussian is a popular choice of smooth filter
 - important property: normalization (unit integral)

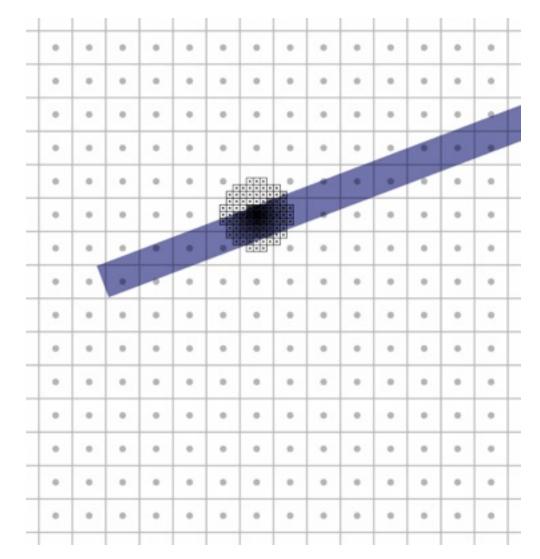
Weighted filtering by supersampling

- Compute filtering integral by summing filter values for covered subpixels
- Simple, accurate
- But really slow

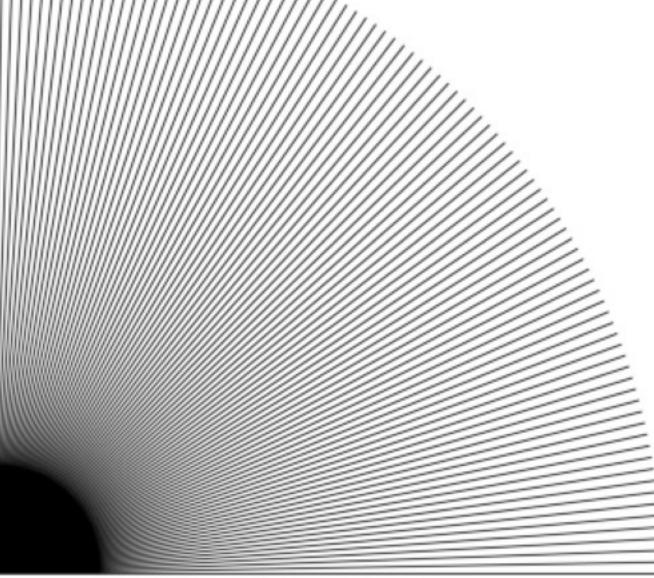


Weighted filtering by supersampling

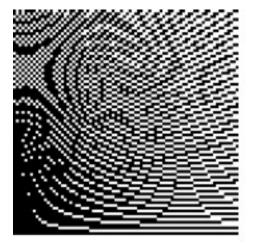
- Compute filtering integral by summing filter values for covered subpixels
- Simple, accurate
- But really slow

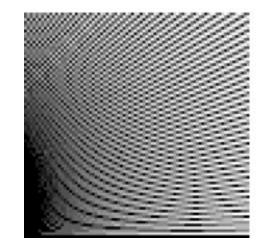


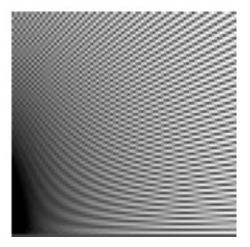
Gaussian filtering in action



Filter comparison



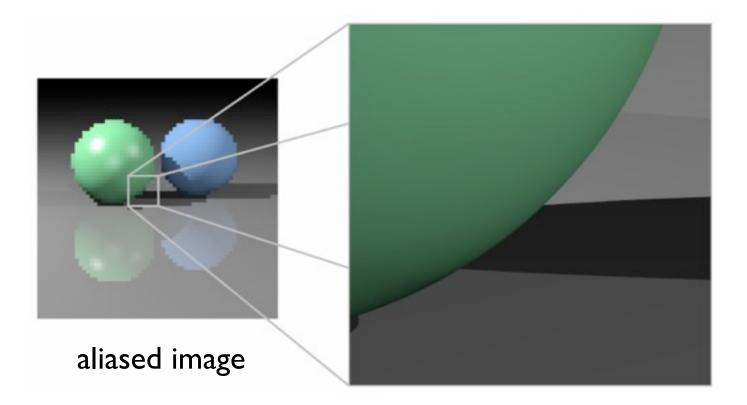




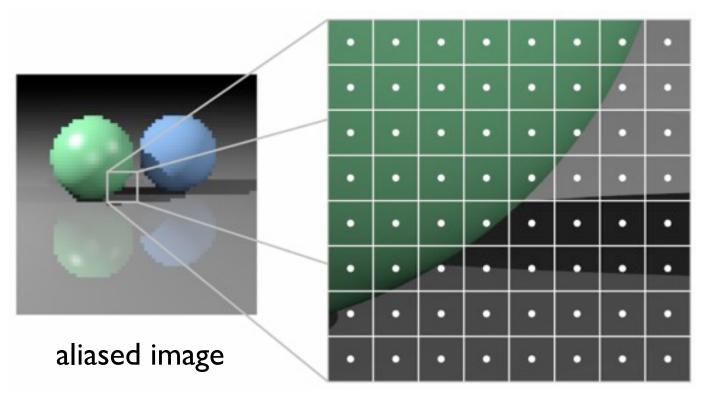
Point sampling

Box filtering

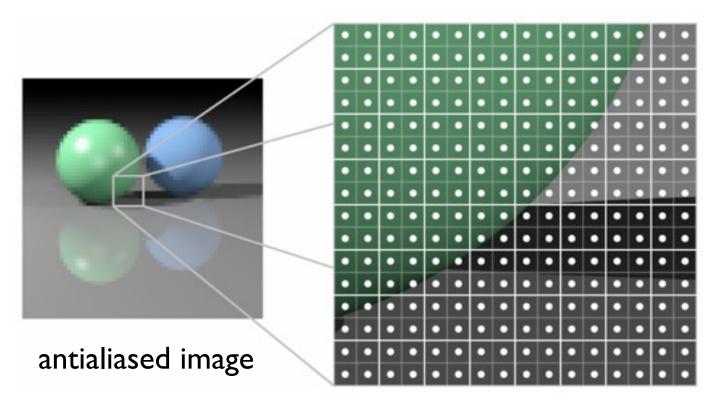
Gaussian filtering



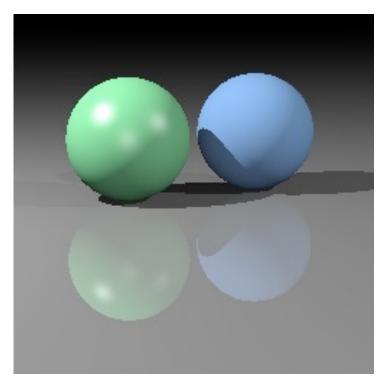
Cornell CS4620 Fall 2014 • Lecture 17

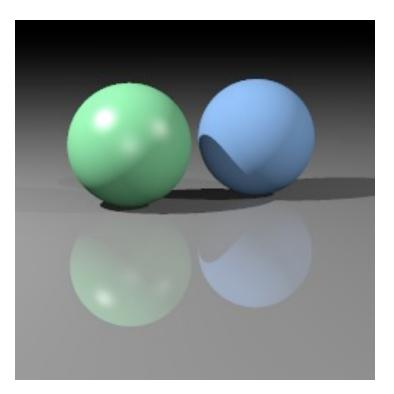


one sample per pixel



four samples per pixel





9 samples/pixel

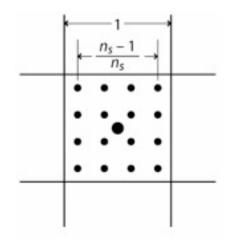
one sample/pixel

Cornell CS4620 Fall 2014 • Lecture 17

Details of supersampling

• For image coordinates with integer pixel centers:

```
// one sample per pixel
for iy = 0 to (ny-1) by 1
for ix = 0 to (nx-1) by 1 {
   ray = camera.getRay(ix, iy);
   image.set(ix, iy, trace(ray));
}
```



```
// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
  for ix = 0 to (nx-1) by 1 {
    Color sum = 0;
    for dx = -(ns-1)/2 to (ns-1)/2 by 1
      for dy = -(ns-1)/2 to (ns-1)/2 by
1 {
        x = ix + dx / ns;
        y = iy + dy / ns;
        ray = camera.getRay(x, y);
        sum += trace(ray);
    image.set(ix, iy, sum / (ns*ns));
  }
```

Details of supersampling

• For image coordinates in unit square

```
// one sample per pixel
for iy = 0 to (ny-1) by 1
for ix = 0 to (nx-1) by 1 {
    double x = (ix + 0.5) / nx;
    double y = (iy + 0.5) / ny;
    ray = camera.getRay(x, y);
    image.set(ix, iy, trace(ray));
}
```

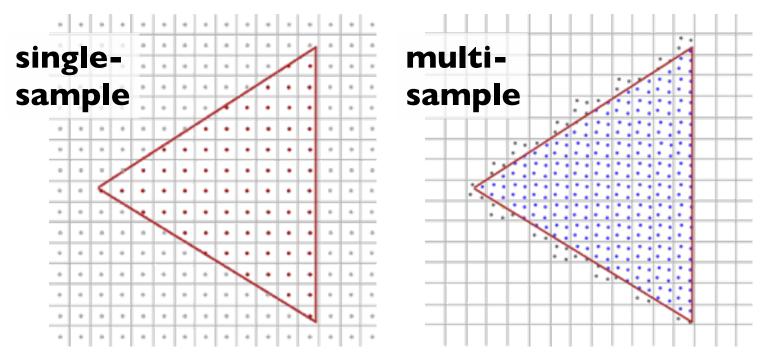
```
// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
  for ix = 0 to (nx-1) by 1 {
    Color sum = 0;
    for dx = 0 to (ns-1) by 1
      for dy = 0 to (ns-1) by 1 {
        x = (ix + (dx + 0.5) / ns) / nx;
        y = (iy + (dy + 0.5) / ns) / ny;
        ray = camera.getRay(x, y);
        sum += trace(ray);
      }
    image.set(ix, iy, sum / (ns*ns));
  }
```

Supersampling vs. multisampling

- Supersampling is terribly expensive
- GPUs use an approximation called *multisampling*
 - Compute one shading value per pixel
 - Store it at many subpixel samples, each with its own depth

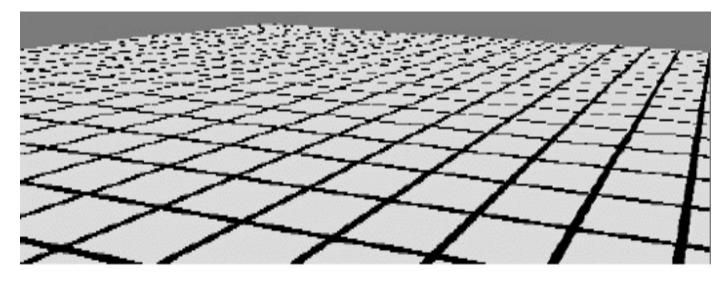
Multisample rasterization

- Each fragment carries several (color,depth) samples
 - shading is computed per-fragment
 - depth test is resolved per-sample
 - final color is average of sample colors



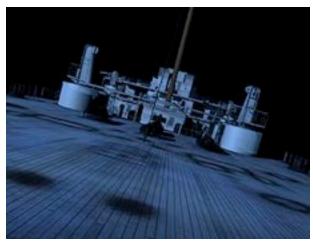
Antialiasing in textures

- Even with multisampling, we still only evaluate textures once per fragment
- Need to filter the texture somehow!
 - perspective produces very high image frequencies
 - (will return to this topic later, time permitting)



Compositing

Compositing



- Often useful combine elements of several images
- Trivial example: video crossfade
 - smooth transition from one scene to another

 $r_C = tr_A + (1-t)r_B$ $g_C = tg_A + (1-t)g_B$ $b_C = tb_A + (1-t)b_B$

- note: weights sum to 1.0
 - no unexpected brightening or darkening

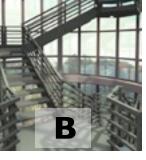
- no out-of-range results
- this is linear interpolation

- Often useful combine elements of several images
- Trivial example: video crossfade
 - smooth transition from one scene to another

 $r_C = tr_A + (1-t)r_B$ $g_C = tg_A + (1-t)g_B$ $b_C = tb_A + (1-t)b_B$

- note: weights sum to 1.0
 - no unexpected brightening or darkening
 - no out-of-range results
- this is linear interpolation

- Often useful combine elements of several images
- Trivial example: video crossfade
 - smooth transition from one scene to another



 $r_C = tr_A + (1-t)r_B$ $g_C = tg_A + (1-t)g_B$ $b_C = tb_A + (1-t)b_B$

- note: weights sum to 1.0
 - no unexpected brightening or darkening

t = .6

- no out-of-range results
- this is linear interpolation

- Often useful combine elements of several images
- Trivial example: video crossfade
 - smooth transition from one scene to another

 $r_C = tr_A + (1-t)r_B$ $g_C = tg_A + (1-t)g_B$ $b_C = tb_A + (1-t)b_B$

- note: weights sum to 1.0
 - no unexpected brightening or darkening
 - no out-of-range results
- this is linear interpolation

Combining images

- Often useful combine elements of several images
- Trivial example: video crossfade
 - smooth transition from one scene to another

 $r_C = tr_A + (1-t)r_B$ $g_C = tg_A + (1-t)g_B$ $b_C = tb_A + (1-t)b_B$

- note: weights sum to 1.0
 - no unexpected brightening or darkening
 - no out-of-range results
- this is linear interpolation

Foreground and background

- In many cases just adding is not enough
- Example: compositing in film production
 - shoot foreground and background separately
 - also include CG elements
 - this kind of thing has been done in analog for decades
 - how should we do it digitally?

Foreground and background

• How we compute new image varies with position

 Therefore, need to store some kind of tag to say what parts of the image are of interest

Binary image mask

- First idea: store one bit per pixel
 - answers question "is this pixel part of the foreground?"

- causes jaggies similar to point-sampled rasterization
- same problem, same solution: intermediate values

Binary image mask

- First idea: store one bit per pixel
 - answers question "is this pixel part of the foreground?"

- causes jaggies similar to point-sampled rasterization
- same problem, same solution: intermediate values

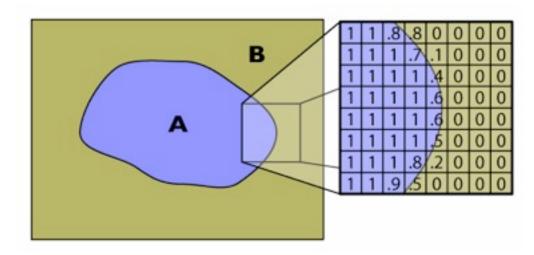
Binary image mask

- First idea: store one bit per pixel
 - answers question "is this pixel part of the foreground?"

- causes jaggies similar to point-sampled rasterization
- same problem, same solution: intermediate values

Partial pixel coverage

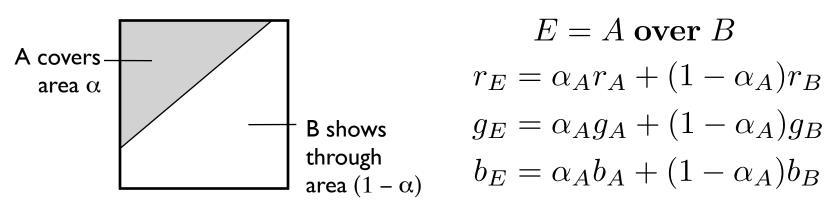
• The problem: pixels near boundary are not strictly foreground or background



- how to represent this simply?
- interpolate boundary pixels between the fg. and bg. colors

Alpha compositing

- Formalized in 1984 by Porter & Duff
- Store fraction of pixel covered, called $\boldsymbol{\alpha}$



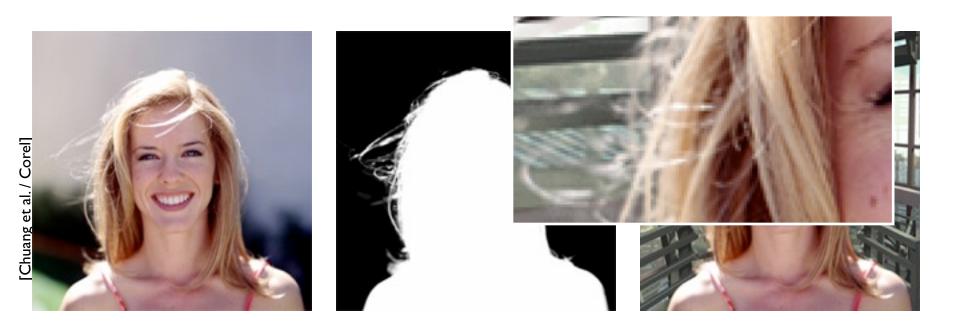
- this exactly like a spatially varying crossfade
- Convenient implementation
 - 8 more bits makes 32
 - 2 multiplies + I add per pixel for compositing

Alpha compositing—example

Cornell CS4620 Fall 2014 • Lecture 17

Alpha compositing—example

Alpha compositing—example

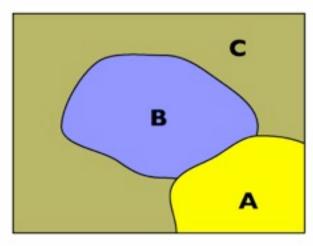


- so far have only considered single fg. over single bg.
- in real applications we have *n* layers
 - *Titanic* example
 - compositing foregrounds to create new foregrounds
 - what to do with α ?
- desirable property: associativity

A over (B over C) = (A over B) over C

– to make this work we need to be careful about how α is computed

• Some pixels are partly covered in more than one layer



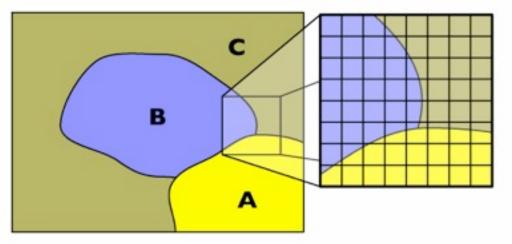
- in D = A over (B over C) what will be the result?

$$c_D = \alpha_A c_A + (1 - \alpha_A)[\alpha_B c_B + (1 - \alpha_B)c_C]$$

= $\alpha_A c_A + (1 - \alpha_A)\alpha_B c_B + (1 - \alpha_A)(1 - \alpha_B)c_C$

Cornell CS4620 Fall 2014 • Lecture 17

• Some pixels are partly covered in more than one layer



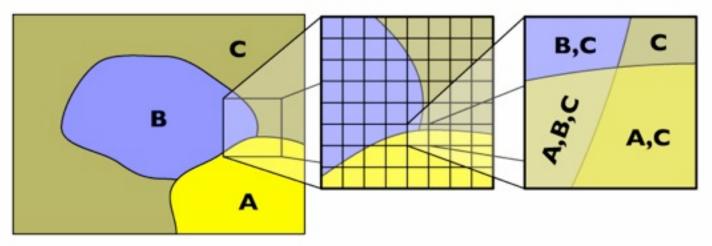
- in D = A **over** (B **over** C) what will be the result?

$$c_D = \alpha_A c_A + (1 - \alpha_A)[\alpha_B c_B + (1 - \alpha_B)c_C]$$

= $\alpha_A c_A + (1 - \alpha_A)\alpha_B c_B + (1 - \alpha_A)(1 - \alpha_B)c_C$

Cornell CS4620 Fall 2014 • Lecture 17

• Some pixels are partly covered in more than one layer



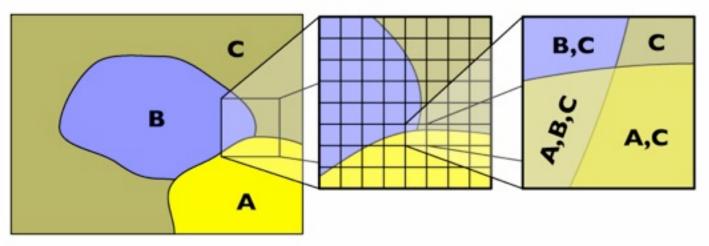
- in D = A **over** (B **over** C) what will be the result?

$$c_D = \alpha_A c_A + (1 - \alpha_A)[\alpha_B c_B + (1 - \alpha_B)c_C]$$

= $\alpha_A c_A + (1 - \alpha_A)\alpha_B c_B + (1 - \alpha_A)(1 - \alpha_B)c_C$

Cornell CS4620 Fall 2014 • Lecture 17

• Some pixels are partly covered in more than one layer



- in D = A **over** (B **over** C) what will be the result?

$$c_D = \alpha_A c_A + (1 - \alpha_A)[\alpha_B c_B + (1 - \alpha_B)c_C]$$

= $\alpha_A c_A + (1 - \alpha_A)\alpha_B c_B + (1 - \alpha_A)(1 - \alpha_B)c_C$

Fraction covered by neither A nor B -

Associativity?

- What does this imply about (A over B)?
 - Coverage has to be

$$\alpha_{(A \text{ over } B)} = 1 - (1 - \alpha_A)(1 - \alpha_B)$$
$$= \alpha_A + (1 - \alpha_A)\alpha_B$$

...but the color values then don't come out nicely
 in D = (A over B) over C:

$$c_D = \alpha_A c_A + (1 - \alpha_A) \alpha_B c_B + (1 - \alpha_A)(1 - \alpha_B) c_C$$
$$= \alpha_{(A \text{ over } B)}(\cdots) + (1 - \alpha_{(A \text{ over } B)}) c_C$$

An optimization

• Compositing equation again

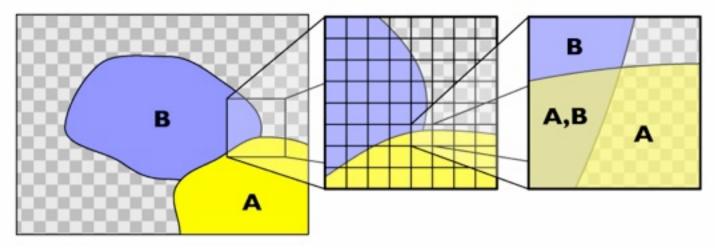
 $c_E = \alpha_A c_A + (1 - \alpha_A) c_B$

- Note c_A appears only in the product $\alpha_A c_A$
 - so why not do the multiplication ahead of time?
- Leads to premultiplied alpha:
 - store pixel value (r', g', b', α) where c' = αc
 - E = A over B becomes

 $c'_E = c'_A + (1 - \alpha_A)c'_B$

- this turns out to be more than an optimization...
- hint: so far the background has been opaque!

• What about just E = A **over** B (with B transparent)?

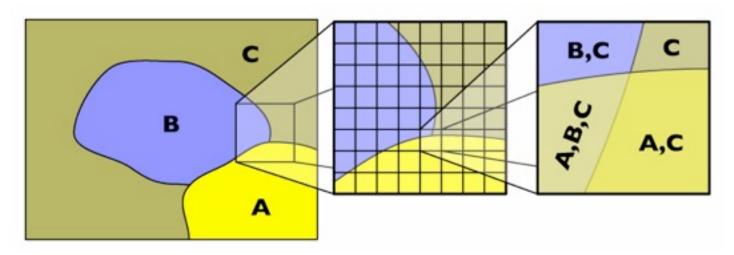


- in premultiplied alpha, the result

$$\alpha_E = \alpha_A + (1 - \alpha_A)\alpha_B$$

looks just like blending colors, and it leads to associativity.

Associativity!



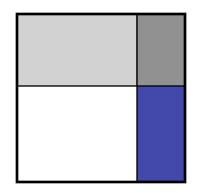
$$c_D = c'_A + (1 - \alpha_A)[c'_B + (1 - \alpha_B)c'_C]$$

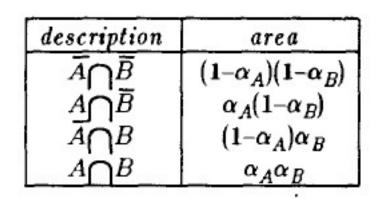
= $[c'_A + (1 - \alpha_A)c'_B] + (1 - \alpha_A)(1 - \alpha_B)c'_C$
= $c'_{(A \text{ over } B)} + (1 - \alpha_{(A \text{ over } B)})c'_C$

- This is another good reason to premultiply

Independent coverage assumption

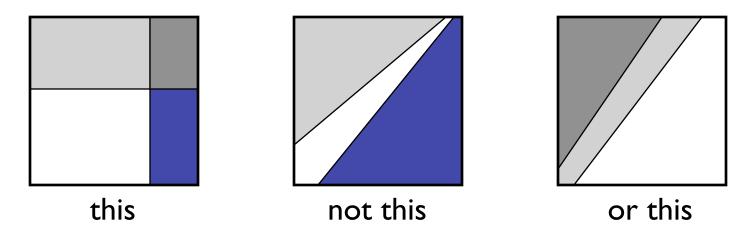
- Why is it reasonable to blend α like a color?
- Simplifying assumption: covered areas are independent
 - that is, uncorrelated in the statistical sense





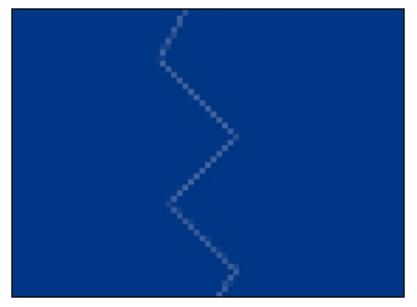
Independent coverage assumption

• Holds in most but not all cases



- This will cause artifacts
 - but we'll carry on anyway because it is simple and usually works...

Alpha compositing—failures



negative correlation: too little foreground

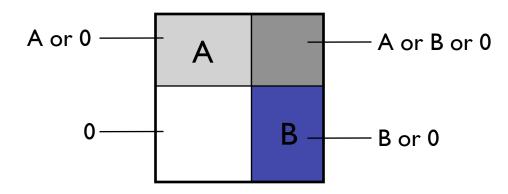
[Cornell PCG]

positive correlation: too much foreground

Other compositing operations

• Generalized form of compositing equation:

 $\alpha_E = A \mathbf{op} B$ $c'_E = F_A c'_A + F_B c'_B$



 $I \times 2 \times 3 \times 2 = I2$ reasonable choices

operation	quadruple	diagram	FA	FB
clear	(0,0,0,0)		0	0
A	(0,A,0,A)		1	0
В	(0,0,B,B)		0	1
A over B	(0,A,B,A)	K	1	1-0
B over A	(0,A,B,B)	$\mathbf{\lambda}$	1-a _g	1
A in B	(0,0,0,A)		aB	0
B in A	(0,0,0,B)		0	a,
A out B	(0,A,0,0)		1–a _B	0
B out A	(0,0,B,0)	\langle	0	1-0,
A atop B	(0,0,B,A)	Y	ag	1-04
B atop A	(0,A,0,B)		1-α _B	aA
A xor B	(0,A,B,0)	X	1-α _B	1-0,