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What is an image?

A photographic print
* A photographic negative?
* This projection screen

e Some numbers in RAM?
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An image is:

A 2D distribution of intensity or color

* A function defined on a two-dimensional plane

TRZ e oo

* Note: no mention of pixels yet

To do graphics, must:
— represent images—encode them numerically
— display images—realize them as actual intensity distributions
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Representative display technologies

Direct-view displays

* Raster CRT display
* LCD display

* LED display

Printers
* Laser printer

* Inkjet printer
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Cathode ray tube

* First widely used electronic display
— developed for TV in the 1920s—1930s

Magnetic
Deflection Coils Phosphor-
Focusing | - Coated
Screen

System

[H&B fig. 2-2]
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Raster CRT display

* Scan pattern fixed in display hardware

* Intensity modulated to produce image
* Oiriginally for TV

— (continuous
analog signal)

* For computer,
intensity determined
by contents of
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LCD flat panel display

* Principle: block or transmit light by twisting its polarization

* lllumination from backlight

(either fluorescent or -
LED)

* Intermediate intensity
levels possible by
partial twist

* Fundamentally raster —
technology

Conductor -

* Fixed format

Polarizer —
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LED Displays
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Electrophoretic (electronic ink)
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Projection displays: LCD

LCD panel (HTPS)

1N/

The technology behind
the internal prism
LCD panel

Dichroic Mirror

[Wikimedia Commons
—Javachan]
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Projection displays: DLP

Projection Lens

Light
Absorber
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Raster display system

* Screen image defined by a 2D array in RAM

* In most (but not all) systems today, it’s in a separate memory
from the normal CPU memory

* The memory area that maps to the screen is called the frame

buffer
ETENRENE
— ]

!

/O Devices
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Color displays

* Operating principle: humans are trichromatic
— match any color with blend of three

— therefore, problem reduces to
producing 3 images and blending

* Additive color
— blend images by sum
— e.g.overlapping projection
— e.g.unresolved dots
— R, G, B make good primaries
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Color displays

* CRT: phosphor dot pattern to produce finely interleaved
color images
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Magnified
Phosphor-Dot
Triangle

[H&B fig. 2-10]
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Laser printer

* Xerographic process

* Like a photocopier but
with laser-scanned raster
as source image

* Key characteristics
— image is binary
— resolution is high

— very small, isolated
dots are not possible
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Laser Scannlng Unit D

Corona Wire

[howstuffworks.com]
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Inkjet printer

* Liquid ink sprayed in small drops

— very small—measured in picoliters

* Head with many jets scans across paper

* Key characteristics:

— image is binary (drop or no drop; no partial drops)

— isolated dots are reproduced well

e

INITIAL STATE RESISTOR IS
WITH FLUID HEATED AND
AT REST BUBBLE

NUCLEATES
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Digital camera

* A raster input device

* Image sensor contains 2D array of photosensors

[CS 417 Spring 2002]
[dpreview.com]

-
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Digital camera

* Color typically captured using color mosaic

Mosaic Capture

| ——e.
—
o —

[Foveon]
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Raster image representation

* All these devices suggest 2D arrays of numbers

* Big advantage: represent arbitrary images
— approximate arbitrary functions with increasing resolution

— works because memory is cheap (brute force approach!)

[Philip Greenspun]
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Meaning of a raster image

* Meaning of a given array is a function on 2D

* Define meaning of array = result of output device!
— that is, piecewise constant for LCD, blurry for CRT
— but: we don’t have just one output device
— but: want to define images we can’t display (e.g. too big)

* Abstracting from device, problem is reconstruction
— image is a sampled representation
— pixel means “this is the intensity around here”
* LCD:intensity is constant over square regions
* CRT:intensity varies smoothly across pixel grid
— will discuss specifics of reconstruction later (maybe not till 5625)
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Datatypes for raster images

* Bitmaps: boolean per pixel (I bpp): I : R* — {0,1}

— interp. = black and white; e.g. fax

« Grayscale: integer per pixel: 1 : R* — [0, 1]
— interp. = shades of gray; e.g. black-and-white print
— precision: usually byte (8 bpp); sometimes 10, 12, or 16 bpp

+ Color: 3 integers per pixel: I : R* — [0, 1]”
— interp. = full range of displayable color; e.g. color print
— precision: usually byte[ 3] (24 bpp)
— sometimes |16 (5+6+5) or 30 or 36 or 48 bpp

Floating point: / : R — R, or [:R* — Ri

— more abstract, because no output device has infinite range

— provides high dynamic range (HDR)

— represent real scenes independent of display

— becoming the standard intermediate format in graphics processor
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Datatypes for raster images

* For color or grayscale, sometimes add alpha channel

— describes transparency of images
— more on this in a few lectures

[Adobe Phota
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Storage requirements for images

* 1024x1024 image (I megapixel)
— bitmap: 128KB
— grayscale 8bpp: IMB

— grayscale |6bpp: 2MB
— color 24bpp: 3MB
— floating-point HDR color: 12MB
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COLOR

Converting pixel formats

* Color to gray
— could take one channel (blue, say)
* leads to odd choices of gray value BLUE ONLY

— combination of channels is better

* but different colors contribute
differently to lightness

 which is lighter, full blue or full green?

* good choice:gray =02 R+0.7G +0.1 B
* more on this in color, later on

GRAY

Same pixel values.

Same luminance?
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Converting pixel precision

* Up is easy; down loses information—be careful

8 bpp (256 grays)
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Converting pixel precision

* Up is easy; down loses information—be careful
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Converting pixel precision

* Up is easy; down loses information—be careful
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Converting pixel precision

* Up is easy; down loses information—be careful
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Converting pixel precision

* Up is easy; down loses information—be careful
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Converting pixel precision

* Up is easy; down loses information—be careful
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Converting pixel precision
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Dithering

* When decreasing bpp, we quantize

* Make choices consistently: banding

* |nstead, be inconsistent—dither

turn on some pixels but not others in gray regions
a way of trading spatial for tonal resolution
choose pattern based on output device

laser, offset: clumped dots required (halftone)
inkjet, screen: dispersed dots can be used
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Dithering methods

* Ordered dither

— based on traditional,
optically produced
halftones

— produces larger dots

* Diffusion dither

— takes advantage of devices
that can reproduce
isolated dots

— the modern winner for
desktop printing
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Ordered Dither example
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Ordered Dither example
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Diffusion dither

+ Produces scattered dots with the right local density

2o s
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Diffusion dither

- Pl"dducesfscattered dots with the right local density

[photo: Philip Greenspun]
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Intensity encoding in images

* What do the numbers in images (pixel values) mean!?
— they determine how bright that pixel is
— bigger numbers are (usually) brighter

— for floating point pixels, they directly give the intensity (in some units) —
they are linearly related to the intensity

— for pixels encoded in integers, this mapping is not direct

 Transfer function: function that maps input pixel value to
luminance of displayed image

I = f(n) e [(), *\?] — []min-. Imax]

* What determines this function?
— physical constraints of device or medium
— desired visual characteristics
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What this projector doe

n = 64

n= 128

[ =0.25 I=0.5 I =0.75

Cornell CS4620 Fall 2014 ¢« Lecture 15 © 2014 Steve Marschner ¢ 31



What this projector doe




What this projector doe

n = 64

n= 128

[ =0.25 I=0.5 I =0.75

Cornell CS4620 Fall 2014 ¢« Lecture 15 © 2014 Steve Marschner ¢ 31



What this projector does (simulated)

n = 64
n= 128
n=192

[ =0.25 I=0.5 I =0.75
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What this projector does

* Something like this:

I(n)

n
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Constraints on transfer function

e Maximum displayable intensity, |

— how much power can be channeled into a pixel?
* LCD: backlight intensity, transmission efficiency (<10%)
» projector: lamp power, efficiency of imager and optics
e Minimum displayable intensity, | .
— light emitted by the display in its “off” state
* e.g. stray electron flux in CRT, polarizer quality in LCD

* Viewing flare, k: light reflected by the display
— very important factor determining image contrast in practice
« 5% of | _ is typical in a normal office environment [sSRGB spec]

* much effort to make very black CRT and LCD screens
* all-black decor in movie theaters
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Dynamic range

e DynamicrangeR,=1__ /I . ,or(l . +tKk)/(l . *+k)

— determines the degree of image contrast that can be achieved
— a major factor in image quality

* Ballpark values
— Desktop display in typical conditions: 20:|
— Photographic print: 30:|
— Desktop display in good conditions: 100: |
— High-end display under ideal conditions: 1000: |
— Digital cinema projection: 1000: |
— Photographic transparency (directly viewed): 1000: |
— High dynamic range display: 10,000: |
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Transfer function shape

* Desirable property: the change from
one pixel value to the next highest
pixel value should not produce a visible
contrast

— otherwise smooth areas of images will
show visible bands

* What contrasts are visible?

— rule of thumb: under good conditions we
can notice a 2% change in intensity

— therefore we generally need smaller
quantization steps in the darker tones than
in the lighter tones

— most efficient quantization is logarithmic
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an image with severe banding
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How many levels are needed?

* Depends on dynamic range
— 2% steps are most efficient:

0— I in:1— 1.0214in:2 — (1.02)2Lin: - .

— log 1.02 is about 1/120, so 120 steps per decade of dynamic range
* 240 for desktop display
* 360 to print to film
* 480 to drive HDR display

* If we want to use linear quantization (equal steps)

— one step must be < 2% (1/50) of [ .

— need to get from ~0 to | .. * R, so need about 50 R} levels
* 1500 for a print; 5000 for desktop display; 500,000 for HDR display

* Moral: 8 bits is just barely enough for low-end applications
— but only if we are careful about quantization
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Intensity quantization in practice

N

« Option |:linear quantization [(n) = (n/N) [, ax
— pro: simple, convenient, amenable to arithmetic
— con: requires more steps (wastes memory)
— need |2 bits for any useful purpose; more than |16 for HDR

 Option 2: power-law quantization /(1) = (n/N)7 I,,ax
— pro:fairly simple, approximates ideal exponential quantization
— con: need to linearize before doing pixel arithmetic
— con: need to agree on exponent

— 8 bits are OK for many applications; |12 for more critical ones

« Option 2:floating-point quantization [(x) = (x/w) Iy ax
— pro: close to exponential; no parameters; amenable to arithmetic
— con: definitely takes more than 8 bits

— | 6-bit “half precision” format is becoming popular
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Why gamma?

* Power-law quantization, or gamma correction is most popular

* Oiriginal reason: CRTs are like that

— intensity on screen is proportional to (roughly) voltage?

* Continuing reason: inertia + memory savings

— inertia: gamma correction is close enough to logarithmic that there’s no
sense in changing

— memory: gamma correction makes 8 bits per pixel an acceptable option
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Gamma quantization

~0.00
0.01
0.04

0.09
__ideal 0.16
exponential 0.25

0.36
0.49
v =2 e— 0.64
0 0.8l
.00

ﬁ linear
(y=1)

* Close enough to ideal perceptually uniform exponential
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Gamma correction

* Sometimes (often, in graphics) we have computed intensities a
that we want to display linearly

* |n the case of an ideal monitor with zero black level,

I(n)=(n/N)

(where N = 2"— | in n bits). Solving for n:
n(I) = NI~

* This is the “gamma correction” recipe that has to be applied
when computed values are converted to 8 bits for output

— failing to do this (implicitly assuming gamma = 1) results in dark,
oversaturated images
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Gamma correction

[Philip Greenspun]

corrected for corrected for
Y lower than v higher than

display display
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sRGB quantization curve

* The predominant standard for “casual color” in computer

displays

— consistent with older typical practice

— designed to work well under imperfect conditions

— these days all monitors are

calibrated to sRGB by
default

— in practice, usually
defines what your
pixel values mean

C
. C < 0.04045
I(C) = c 2.4
($2)" . € >0.04045
C =n/N
o = 0.055
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Converting from HDR to LDR

* “High dynamic range” — pixels can be arbitrarily bright or dark
* “Low dynamic range” — there are limits on the min and max

* Simplest solution: just scale and clamp
]LDR = min(l, aI)ImaX
* More flexible: introduce a contrast control

[LDR — min(l, aIV)ImaX

* Scale factor a is “exposure”
— often quoted on a power-of-2 scale
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Transfer functions for LDR display

* Not a new problem at all; photography has been dealing with

thlS fOI’ a centu r)' the first to state the relation between density and exposure. The
underexposure part (below log E ~8.9) is called the “toe.” The
° |n ﬁlm TS the ovcrcxpf)surc rcgic')'n (above log E «1.1) is sometimes referred to
“D | E,, . as t_hc .shou!du. ' .

og curve. Since, in the correct representation of the light and shade of the
d ensity vs I o subject photographed, the opacity of the negative should be pro-
y : g portional to the quantity of light coming from the subject, it
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16, 6—Denanlycxposure curve showing toe, slroightline, and showulder Z,

follows that the time of exposure should be such as to give den-
sities on the plate which lie on the straight-line portion of the
density-exposure curve. It is found that if the exposure is too
short, there is no detail in the shadows, although there may be a
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Ward | Fattal | LCIS (Tumblin)




