
© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Rasterization

CS4620 Lecture 13

1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

The graphics pipeline

• The standard approach to object-order graphics
• Many versions exist

– software, e.g. Pixar’s REYES architecture
• many options for quality and flexibility

– hardware, e.g. graphics cards in PCs
• amazing performance: millions of triangles per frame

• We’ll focus on an abstract version of hardware pipeline
• “Pipeline” because of the many stages

– very parallelizable
– leads to remarkable performance of graphics cards (many

times the flops of the CPU at ~1/5 the clock speed)

2

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

Pipeline

3

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Primitives

• Points
• Line segments

– and chains of connected line segments

• Triangles
• And that’s all!

– Curves? Approximate them with chains of line segments
– Polygons? Break them up into triangles
– Curved regions? Approximate them with triangles

• Trend has been toward minimal primitives
– simple, uniform, repetitive: good for parallelism

4

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Rasterization

• First job: enumerate the pixels covered by a primitive
– simple, aliased definition: pixels whose centers fall inside

• Second job: interpolate values across the primitive
– e.g. colors computed at vertices
– e.g. normals at vertices
– will see applications later on

5

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Rasterizing lines

• Define line as a
rectangle

• Specify by two
endpoints

• Ideal image: black
inside, white outside

6

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Rasterizing lines

• Define line as a
rectangle

• Specify by two
endpoints

• Ideal image: black
inside, white outside

6

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Point sampling

• Approximate
rectangle by
drawing all pixels
whose centers fall
within the line

• Problem:
sometimes turns on
adjacent pixels

7

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Point sampling

• Approximate
rectangle by
drawing all pixels
whose centers fall
within the line

• Problem:
sometimes turns on
adjacent pixels

7

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Point sampling
in action

8

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Bresenham lines (midpoint alg.)

• Point sampling unit
width rectangle leads
to uneven line width

• Define line width
parallel to pixel grid

• That is, turn on the
single nearest pixel
in each column

• Note that 45º lines
are now thinner

9

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Bresenham lines (midpoint alg.)

• Point sampling unit
width rectangle leads
to uneven line width

• Define line width
parallel to pixel grid

• That is, turn on the
single nearest pixel
in each column

• Note that 45º lines
are now thinner

9

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Bresenham lines (midpoint alg.)

• Point sampling unit
width rectangle leads
to uneven line width

• Define line width
parallel to pixel grid

• That is, turn on the
single nearest pixel
in each column

• Note that 45º lines
are now thinner

9

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Midpoint algorithm
in action

10

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Algorithms for drawing lines

• line equation:
y = b + m x

• Simple algorithm:
evaluate line
equation per column

• W.l.o.g. x0 < x1;
0 ≤ m ≤ 1

for x = ceil(x0) to floor(x1)
 y = b + m*x
 output(x, round(y)) y = 1.91 + 0.37 x

11

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Optimizing line drawing

• Multiplying and
rounding is slow

• At each pixel the
only options are E
and NE

• d = m(x + 1) + b – y
• d > 0.5 decides

between E and NE

12

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

• d = m(x + 1) + b – y
• Only need to update

d for integer steps in
x and y

• Do that with
addition

• Known as
“DDA” (digital
differential analyzer)

Optimizing line drawing

13

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Midpoint line algorithm

x = ceil(x0)
y = round(m*x + b)
d = m*(x + 1) + b – y
while x < floor(x1)
 if d > 0.5
 y += 1
 d –= 1
 x += 1
 d += m
 output(x, y)

14

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Linear interpolation

• We often attach attributes to vertices
– e.g. computed diffuse color of a hair being drawn using lines
– want color to vary smoothly along a chain of line segments

• Recall basic definition

– 1D: f(x) = (1 – α) y0 + α y1

– where α = (x – x0) / (x1 – x0)

• In the 2D case of a line segment, alpha is just the
fraction of the distance from (x0, y0) to (x1, y1)

15

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Linear interpolation

• Pixels are not
exactly on the line

• Define 2D function
by projection on
line
– this is linear in 2D
– therefore can use

DDA to interpolate

16

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Linear interpolation

• Pixels are not
exactly on the line

• Define 2D function
by projection on
line
– this is linear in 2D
– therefore can use

DDA to interpolate

16

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Linear interpolation

• Pixels are not
exactly on the line

• Define 2D function
by projection on
line
– this is linear in 2D
– therefore can use

DDA to interpolate

16

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Alternate interpretation

• We are updating d and α as we step from pixel to pixel
– d tells us how far from the line we are
α tells us how far along the line we are

• So d and α are coordinates in a coordinate system
oriented to the line

17

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Alternate interpretation

• View loop as visiting
all pixels the line
passes through
Interpolate d and α

for each pixel
Only output frag.

if pixel is in band

• This makes linear
interpolation the
primary operation

18

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Pixel-walk line rasterization

x = ceil(x0)
y = round(m*x + b)
d = m*x + b – y
while x < floor(x1)
 if d > 0.5
 y += 1; d –= 1;
 else
 x += 1; d += m;
 if –0.5 < d ≤ 0.5
 output(x, y)

19

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Rasterizing triangles

• The most common case in most applications
– with good antialiasing can be the only case
– some systems render a line as two skinny triangles

• Triangle represented by three vertices
• Simple way to think of algorithm follows the pixel-walk

interpretation of line rasterization
– walk from pixel to pixel over (at least) the polygon’s area
– evaluate linear functions as you go
– use those functions to decide which pixels are inside

20

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Rasterizing triangles

• Input:
– three 2D points (the triangle’s vertices in pixel space)

• (x0, y0); (x1, y1); (x2, y2)

– parameter values at each vertex

• q00, …, q0n; q10, …, q1n; q20, …, q2n

• Output: a list of fragments, each with
– the integer pixel coordinates (x, y)

– interpolated parameter values q0, …, qn

21

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Rasterizing triangles

• Summary
1	
 evaluation of linear

functions on pixel
grid

2	
 functions defined by
parameter values
at vertices

3	
 using extra
parameters
to determine
fragment set

22

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Incremental linear evaluation

• A linear (affine, really) function on the plane is:

• Linear functions are efficient to evaluate on a grid:

23

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Incremental linear evaluation

linEval(xm, xM, ym, yM, cx, cy, ck) {

 // setup
 qRow = cx*xm + cy*ym + ck;

 // traversal
 for y = ym to yM {
 qPix = qRow;
 for x = xm to xM {
 output(x, y, qPix);
 qPix += cx;
 }
 qRow += cy;
 }
} cx = .005; cy = .005; ck = 0

(image size 100x100)

24

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Rasterizing triangles

• Summary
1	
 evaluation of linear

functions on pixel
grid

2	
 functions defined by
parameter values
at vertices

3	
 using extra
parameters
to determine
fragment set

25

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Defining parameter functions

• To interpolate parameters across a triangle we need to
find the cx, cy, and ck that define the (unique) linear

function that matches the given values at all 3 vertices
– this is 3 constraints on 3 unknown coefficients:

– leading to a 3x3 matrix equation for the coefficients:

(singular iff triangle
is degenerate)

(each states that the function
agrees with the given value
at one vertex)

26

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Defining parameter functions

• More efficient version: shift origin to (x0, y0)

– now this is a 2x2 linear system (since q0 falls out):

– solve using Cramer’s rule (see Shirley):

27

q(x, y) = cx(x� x0) + cy(y � y0) + q0

q(x1, y1) = cx(x1 � x0) + cy(y1 � y0) + q0 = q1

q(x2, y2) = cx(x2 � x0) + cy(y2 � y0) + q0 = q2

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Defining parameter functions

linInterp(xm, xM, ym, yM, x0, y0, q0,
x1, y1, q1, x2, y2, q2) {

 // setup
 det = (x1–x0)*(y2–y0) – (x2–x0)*(y1–y0);
 cx = ((q1–q0)*(y2–y0) – (q2–q0)*(y1–y0)) / det;
 cy = ((q2–q0)*(x1–x0) – (q1–q0)*(x2–x0)) / det;
 qRow = cx*(xm–x0) + cy*(ym–y0) + q0;

 // traversal (same as before)
 for y = ym to yM {
 qPix = qRow;
 for x = xm to xM {
 output(x, y, qPix);
 qPix += cx;
 }
 qRow += cy;
 }
}

q = 0 q = 1

q = 0

28

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Interpolating several parameters

linInterp(xm, xM, ym, yM, n, x0, y0, q0[],
x1, y1, q1[], x2, y2, q2[]) {

 // setup
 for k = 0 to n–1
 // compute cx[k], cy[k], qRow[k]
 // from q0[k], q1[k], q2[k]

 // traversal
 for y = ym to yM {
 for k = 1 to n, qPix[k] = qRow[k];
 for x = xm to xM {
 output(x, y, qPix);
 for k = 1 to n, qPix[k] += cx[k];
 }
 for k = 1 to n, qRow[k] += cy[k];
 }
}

29

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Rasterizing triangles

• Summary
1	
 evaluation of linear

functions on pixel
grid

2	
 functions defined by
parameter values
at vertices

3	
 using extra
parameters
to determine
fragment set

30

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Clipping to the triangle

• Interpolate three barycentric
coordinates across the
plane
– recall each barycentric coord

is 1 at one vert. and 0 at
the other two

• Output fragments only
when all three are > 0.

31

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Pixel-walk (Pineda) rasterization

• Conservatively
visit a superset of
the pixels you want

• Interpolate linear
functions

• Use those functions
to determine when
to emit a fragment

32

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Rasterizing triangles

• Exercise caution
with rounding and
arbitrary decisions
– need to visit these

pixels once
– but it’s important not

to visit them twice!

33

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Clipping

• Rasterizer tends to assume triangles are on screen
– particularly problematic to have triangles crossing

the plane z = 0
• After projection, before perspective divide

– clip against the planes x, y, z = 1, –1 (6 planes)
– primitive operation: clip triangle against axis-aligned plane

34

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 13

Clipping a triangle against a plane

• 4 cases, based on sidedness of vertices
– all in (keep)
– all out (discard)
– one in, two out (one clipped triangle)
– two in, one out (two clipped triangles)

35

