Rasterization

CS4620 Lecture 13

The graphics pipeline

- The standard approach to object-order graphics
- Many versions exist
- software, e.g. Pixar's REYES architecture
- many options for quality and flexibility
- hardware, e.g. graphics cards in PCs
- amazing performance: millions of triangles per frame
- We'll focus on an abstract version of hardware pipeline
- "Pipeline" because of the many stages
- very parallelizable
- leads to remarkable performance of graphics cards (many times the flops of the CPU at $\sim 1 / 5$ the clock speed)

Pipeline
you are here

APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY
conversion of primitives to pixels
blending, compositing, shading

Primitives

- Points
- Line segments
- and chains of connected line segments
- Triangles
- And that's all!
- Curves? Approximate them with chains of line segments
- Polygons? Break them up into triangles
- Curved regions? Approximate them with triangles
- Trend has been toward minimal primitives
- simple, uniform, repetitive: good for parallelism

Rasterization

- First job: enumerate the pixels covered by a primitive
- simple, aliased definition: pixels whose centers fall inside
- Second job: interpolate values across the primitive
- e.g. colors computed at vertices
- e.g. normals at vertices
- will see applications later on

Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside

-	*	-	*	-	-	-	-	-	-	-	-	-	*	
-	-	-	-	-	-	-	-	-	*	-	-	*	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	*	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-			-	-	-	
-	-	-	-	-	-			-	-	-	-	-	-	
-	-	-				-	-	-	-	-	-	-	-	
-	-		-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	*	-	-	-	-	*	-	
-	*	-	-	-	-	*	-	-	*	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside

-	-	-	-	-	*	-	*	-	*	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	
-	-	-	-	-	*	-	-	-	-	-	-	-		
-	*	-	*	-	-	-	-	*	-					
-	-	-	*	-	-	-	-					-	-	
-	-	-	-	-					-	-	-	-	\bullet	
-	-						-	-	-	-	-	-	-	
-	-			-	-	-	-	-	-	-	*	*	-	
-	-	-	-	-	-	-	-	-	-	-	-	*	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	
-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	
-	-	-	-	-	*	-	-	-	-	-	-	*	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	*	-	-	-	-	-	-	-	-	
-	-	-	-	-	*	-	-	-	-	-	-	-	-	

Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem:
sometimes turns on adjacent pixels

Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem:
sometimes turns on adjacent pixels

-	-	-	-	*	*	-	*	-	*	-	-	-	-
*	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	*	-	-	-	-	-	-	-	-
-	*	-	*	-	-	-	-	-	-	-			
-	-	-	-	-	-	-	-				-	-	©
-	-	-	-	-	e				-	-	-	-	*
-	-	-				-	-	-	-	-	-	-	-
-	-		-	-	-	-	*	-	-	-	-	*	-
-	-	-	-	-	-	-	-	-	-	*	-	-	-
*	-	-	-	-	-	\bullet	-	*	-	*	-	*	-
-	*	-	-	-	-	*	-	-	-	-	-	-	-
-	-	-	-	-	-	\bullet	-	-	-	-	-	-	*
-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	*
-	-	-	-	-	-	-	-	*	-	-	-	-	-

© 2014 Steve Marschner • 8

Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner

Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner

Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner

Algorithms for drawing lines

- line equation:

$$
y=b+m x
$$

- Simple algorithm: evaluate line equation per column
- W.I.o.g. $x_{0}<x_{1}$;

$$
0 \leq m \leq 1
$$

$$
\begin{aligned}
& \text { for } x=\operatorname{ceil}(x 0) \text { to floor }(x l) \\
& y=b+m * x \\
& \text { output }(x, \text { round }(y))
\end{aligned}
$$

Optimizing line drawing

- Multiplying and rounding is slow
- At each pixel the only options are E and NE
- $d=m(x+1)+b-y$
- $d>0.5$ decides between E and NE

Optimizing line drawing

- $d=m(x+1)+b-y$
- Only need to update d for integer steps in x and y
- Do that with addition
- Known as
"DDA" (digital differential analyzer)

Midpoint line algorithm

$$
\begin{aligned}
& \mathrm{x}=\operatorname{ceil}(\mathrm{x} 0) \\
& \mathrm{y}=\operatorname{round}(\mathrm{m} * \mathrm{x}+\mathrm{b}) \\
& \mathrm{d}=\mathrm{m} *(\mathrm{x}+\mathrm{l})+\mathrm{b}-\mathrm{y} \\
& \text { while } \mathrm{x}<\text { floor }(\mathrm{xl}) \\
& \text { if } \mathrm{d}>0.5 \\
& \mathrm{y}+=1 \\
& \mathrm{~d}-=1 \\
& \mathrm{x}+=1 \\
& \mathrm{~d}+=\mathrm{m} \\
& \text { output }(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

Linear interpolation

- We often attach attributes to vertices
- e.g. computed diffuse color of a hair being drawn using lines
- want color to vary smoothly along a chain of line segments
- Recall basic definition
- ID: $f(x)=(1-\alpha) y_{0}+\alpha y_{1}$
- where $\alpha=\left(x-x_{0}\right) /\left(x_{1}-x_{0}\right)$
- In the 2D case of a line segment, alpha is just the fraction of the distance from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$

Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
- this is linear in 2D
- therefore can use DDA to interpolate

Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
- this is linear in 2D
- therefore can use DDA to interpolate

Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
- this is linear in 2D
- therefore can use DDA to interpolate

-	-	-	-	-	*	-	*	-	-	-	-	-	-
-	-	-	*	-	-	-	-	-	-	-	-	-	-
-	-	*	-	-	-	-	-	-	-	-	-	-	
-	-	-	*	-	-	-	-	-	-	-			
-	-	-	-	-	-	-	-				-	-	*
-	-	-	-	-	-			-	-	-	-	-	-
-	-	-				-	*	-	-	-	-	-	-
-				*	-	-	*	-	-	-	-	*	*
-	-	-	-	-	-	\bullet	-	-	-	-	-	-	*
*	-	-	-	-	-	*	-	-	-	*	-	*	-
-	-	-	-	-	-	\bullet	-	-	-	-	-	*	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	*	\bullet	-	-	-	-	-	-	-
-	-	-	-	-	*	-	*	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-

Alternate interpretation

- We are updating d and α as we step from pixel to pixel
$-d$ tells us how far from the line we are α tells us how far along the line we are
- So d and α are coordinates in a coordinate system oriented to the line

Alternate interpretation

- View loop as visiting all pixels the line passes through Interpolate d and α for each pixel
Only output frag. if pixel is in band
- This makes linear interpolation the primary operation

-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-			
-	-	-	-	-	-	-	-					-	-
-	-	-	-	-					-	-	-	-	-
-	-						-	-	-	-	-	-	-
				-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	*	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet
-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-

Pixel-walk line rasterization

$$
\begin{aligned}
& x=\text { ceil }(x 0) \\
& y=\text { round }(m * x+b) \\
& d=m * x+b-y \\
& \text { while } x<\text { floor }(x l) \\
& \text { if } d>0.5 \\
& y+=1 ; d-=1 ; \\
& \text { else } \\
& x+=1 ; d+=m ; \\
& \text { if -0.5 <d } \leq 0.5 \\
& \text { output }(x, y)
\end{aligned}
$$

-	-	-	-	-	-	-	-	-	-	-	-	\bullet	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-					-	-	
-	-	-	-	-					-	-	-	-	-	
-	-						-	-	-	-	-	-	-	
				-	-	-	-	*	-	-	-	-	-	
			-	-	-	-	-	-	-	-	-	\bullet	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	\bullet	-	

Rasterizing triangles

- The most common case in most applications
- with good antialiasing can be the only case
- some systems render a line as two skinny triangles
- Triangle represented by three vertices
- Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization
- walk from pixel to pixel over (at least) the polygon's area
- evaluate linear functions as you go
- use those functions to decide which pixels are inside

Rasterizing triangles

- Input:
- three 2D points (the triangle's vertices in pixel space)
- $\left(x_{0}, y_{0}\right) ;\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right)$
- parameter values at each vertex

$$
\cdot q_{00}, \ldots, q_{0 n} ; q_{10}, \ldots, q_{1 n} ; q_{20}, \ldots, q_{2 n}
$$

- Output: a list of fragments, each with
- the integer pixel coordinates (x, y)
- interpolated parameter values q_{0}, \ldots, q_{n}

Rasterizing triangles

- Summary

I evaluation of linear functions on pixel grid

2 functions defined by parameter values at vertices

3 using extra parameters to determine fragment set

Incremental linear evaluation

- A linear (affine, really) function on the plane is:

$$
q(x, y)=c_{x} x+c_{y} y+c_{k}
$$

- Linear functions are efficient to evaluate on a grid:

$$
\begin{aligned}
q(x+1, y) & =c_{x}(x+1)+c_{y} y+c_{k}=q(x, y)+c_{x} \\
q(x, y+1) & =c_{x} x+c_{y}(y+1)+c_{k}=q(x, y)+c_{y}
\end{aligned}
$$

Incremental linear evaluation

```
linEval(xm, xM, ym, yM, cx, cy, ck) \{
    // setup
    qRow \(=c x * x m+c y * y m+c k ;\)
    // traversal
    for \(\mathrm{y}=\mathrm{ym}\) to yM \{
    qPix = qRow;
    for \(\mathrm{x}=\mathrm{xm}\) to xM \{
            output(x, y, qPix);
            qPix += cx;
        \}
        qRow += cy;
    \}
\}
```

$$
\begin{gathered}
c_{x}=.005 ; c_{y}=.005 ; c_{k}=0 \\
\quad \text { (image size } 100 \times 100 \text {) }
\end{gathered}
$$

Rasterizing triangles

- Summary

I evaluation of linear functions on pixel grid

2 functions defined by parameter values at vertices

3 using extra parameters to determine fragment set

Defining parameter functions

- To interpolate parameters across a triangle we need to find the c_{x}, c_{y}, and c_{k} that define the (unique) linear function that matches the given values at all 3 vertices
- this is 3 constraints on 3 unknown coefficients:

$$
\begin{aligned}
& c_{x} x_{0}+c_{y} y_{0}+c_{k}=q_{0} \\
& c_{x} x_{1}+c_{y} y_{1}+c_{k}=q_{1} \\
& c_{x} x_{2}+c_{y} y_{2}+c_{k}=q_{2}
\end{aligned}
$$

(each states that the function agrees with the given value at one vertex)

- leading to a 3×3 matrix equation for the coefficients:

$$
\left[\begin{array}{lll}
x_{0} & y_{0} & 1 \\
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right]\left[\begin{array}{l}
c_{x} \\
c_{y} \\
c_{k}
\end{array}\right]=\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2}
\end{array}\right] \quad \begin{aligned}
& \text { (singular iff triangle } \\
& \text { is degenerate) }
\end{aligned}
$$

Defining parameter functions

- More efficient version: shift origin to $\left(x_{0}, y_{0}\right)$

$$
\begin{aligned}
q(x, y) & =c_{x}\left(x-x_{0}\right)+c_{y}\left(y-y_{0}\right)+q_{0} \\
q\left(x_{1}, y_{1}\right) & =c_{x}\left(x_{1}-x_{0}\right)+c_{y}\left(y_{1}-y_{0}\right)+q_{0}=q_{1} \\
q\left(x_{2}, y_{2}\right) & =c_{x}\left(x_{2}-x_{0}\right)+c_{y}\left(y_{2}-y_{0}\right)+q_{0}=q_{2}
\end{aligned}
$$

- now this is a 2×2 linear system (since q_{0} falls out):

$$
\left[\begin{array}{ll}
\left(x_{1}-x_{0}\right) & \left(y_{1}-y_{0}\right) \\
\left(x_{2}-x_{0}\right) & \left(y_{2}-y_{0}\right)
\end{array}\right]\left[\begin{array}{l}
c_{x} \\
c_{y}
\end{array}\right]=\left[\begin{array}{l}
q_{1}-q_{0} \\
q_{2}-q_{0}
\end{array}\right]
$$

- solve using Cramer's rule (see Shirley):

$$
\begin{aligned}
& c_{x}=\left(\Delta q_{1} \Delta y_{2}-\Delta q_{2} \Delta y_{1}\right) /\left(\Delta x_{1} \Delta y_{2}-\Delta x_{2} \Delta y_{1}\right) \\
& c_{y}=\left(\Delta q_{2} \Delta x_{1}-\Delta q_{1} \Delta x_{2}\right) /\left(\Delta x_{1} \Delta y_{2}-\Delta x_{2} \Delta y_{1}\right)
\end{aligned}
$$

Defining parameter functions

```
linInterp(xm, xM, ym, yM, x0, y0, q0,
    \(\mathrm{xl}, \mathrm{yl}, \mathrm{ql}, \mathrm{x} 2, \mathrm{y} 2, \mathrm{q}\) ) \(\{\)
    // setup
    \(\operatorname{det}=(x l-x 0) *(y 2-y 0)-(x 2-x 0) *(y l-y 0) ;\)
    \(\mathrm{cx}=((\mathrm{ql}-\mathrm{q} 0) *(\mathrm{y} 2-\mathrm{y} 0)-(\mathrm{q} 2-\mathrm{q} 0) *(\mathrm{yl}-\mathrm{y} 0)) / \operatorname{det} ;\)
    cy \(=((q 2-q 0) *(x l-x 0)-(q l-q 0) *(x 2-x 0)) / \operatorname{det} ;\)
    qRow \(=c x^{*}(x m-x 0)+c y^{*}(y m-y 0)+q 0\);
    // traversal (same as before)
    for \(\mathrm{y}=\mathrm{ym}\) to yM \{
        qPix = qRow;
        for \(x=x m\) to \(x M\{\)
            output(x, y, qPix);
            qPix += cx;
        \}
    qRow += cy;
    \}
\}
```


Interpolating several parameters

```
linInterp(xm, xM, ym, yM, n, x0, y0, q0[],
    xl, yl, ql[], x2, y2, q2[]) {
    // setup
    for k = 0 to n-1
        // compute cx[k], cy[k], qRow[k]
        // from qO[k], ql[k], q2[k]
    // traversal
    for y = ym to yM {
    for k=1 to n, qPix[k] = qRow[k];
        for x = xm to xM {
            output(x, y, qPix);
            for k = l to n, qPix[k] += cx[k];
        }
        for k=1 to n, qRow[k] += cy[k];
    }
}
```


Rasterizing triangles

- Summary

I evaluation of linear functions on pixel grid

2 functions defined by parameter values at vertices

3 using extra parameters to determine fragment set

Clipping to the triangle

- Interpolate three barycentric coordinates across the plane
- recall each barycentric coord is I at one vert. and 0 at the other two
- Output fragments only when all three are >0.

Pixel-walk (Pineda) rasterization

- Conservatively visit a superset of the pixels you want
- Interpolate linear functions
- Use those functions to determine when to emit a fragment

Rasterizing triangles

- Exercise caution with rounding and arbitrary decisions
- need to visit these pixels once
- but it's important not to visit them twice!

*	-	-	-	-	*	*	*	-	-	-	-	-	*	
*	-	*	-	-	-	-	-	-	-	-	-	-	-	
-	-	*	-	e	0	-	-	-	-		\bigcirc	-	-	
-	*		-	-	e	e	e	*	*	0		-	-	
-	-		e	-	-	e	-	-	-	-	-		*	
*	-	-	-	e	-	e	-	*	*	-	-			
-	-	\bullet		-	-	-	*	-	\bullet	-	-	-		
-	-	-		-	e	*	-	-	-	-	-			
-	-	-	-	-	0	-	-	-	-	-		-	\bullet	
*	-	-	-		-	\cdots	-	\bullet		-	-	-	-	
-	-	-	-		-	-	-		\bullet	-	-	*	-	
-	-	-	-	-	-			-	-	-	*	-	e	
-	-	-	-	-		-	-	-	-	-	-	-	\bullet	
-	-	-	-	-	*	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	*	-	-	-	-	-	

Clipping

- Rasterizer tends to assume triangles are on screen
- particularly problematic to have triangles crossing the plane $z=0$
- After projection, before perspective divide
- clip against the planes $x, y, z=1,-1$ (6 planes)
- primitive operation: clip triangle against axis-aligned plane

Clipping a triangle against a plane

- 4 cases, based on sidedness of vertices
- all in (keep)
- all out (discard)
- one in, two out (one clipped triangle)
- two in, one out (two clipped triangles)

