3D Viewing

CS 4620 Lecture 12

Viewing, backward and forward

- So far have used the backward approach to viewing
- start from pixel
- ask what part of scene projects to pixel
- explicitly construct the ray corresponding to the pixel
- Next will look at the forward approach
- start from a point in 3D
- compute its projection into the image
- Central tool is matrix transformations
- combines seamlessly with coordinate transformations used to position camera and model
- ultimate goal: single matrix operation to map any 3D point to its correct screen location.

Forward viewing

- Would like to just invert the ray generation process
- Problem I: ray generation produces rays, not points in scene
- Inverting the ray tracing process requires division for the perspective case

Mathematics of projection

- Always work in eye coords
- assume eye point at $\mathbf{0}$ and plane perpendicular to z
- Orthographic case
- a simple projection: just toss out z
- Perspective case: scale diminishes with z
- and increases with d

Pipeline of transformations

- Standard sequence of transforms

canonical view volume

Parallel projection: orthographic

to implement orthographic, just toss out z :

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

View volume: orthographic

Viewing a cube of size 2

- Start by looking at a restricted case: the canonical view volume
- It is the cube $[-I, I]^{3}$, viewed from the z direction
- Matrix to project it into a square image in $[-I, I]^{2}$ is trivial:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Viewing a cube of size 2

- To draw in image, need coordinates in pixel units, though
- Exactly the opposite of mapping (i, j) to (u, v) in ray generation

Windowing transforms

- This transformation is worth generalizing: take one axis-aligned rectangle or box to another
- a useful, if mundane, piece of a transformation chain

[Shirley3e f. 6-I6; eq. 6-6]

$$
\left[\begin{array}{ccc}
1 & 0 & x_{l}^{\prime} \\
0 & 1 & y_{l}^{\prime} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{x_{h}^{\prime}-x_{l}^{\prime}}{x_{h}-x_{l}} & 0 & 0 \\
0 & \frac{y_{h}^{\prime}-y_{l}^{\prime}}{y_{h}-y_{l}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -x_{l} \\
0 & 1 & -y_{l} \\
0 & 0 & 1
\end{array}\right]
$$

translate
$\left[\frac{x_{h}^{\prime}-x_{l}^{\prime}}{x_{h}-x_{l}}\right.$
$0 \quad \frac{x_{l}^{\prime} x_{h}-x_{h}^{\prime} x_{l}}{x_{h}-x_{l}}$
0
$\frac{y_{h}^{\prime}-y_{l}^{\prime}}{y_{h}-y_{l}}$ $\left.\begin{array}{c}\frac{y_{l}^{\prime} y_{h}-y_{h}^{\prime} y_{l}}{y_{h}-y_{l}} \\ 1\end{array}\right]$

Viewport transformation

$\left[\begin{array}{c}x_{\text {screen }} \\ y_{\text {screen }} \\ 1\end{array}\right]=\left[\begin{array}{ccc}\frac{n_{x}}{2} & 0 & \frac{n_{x}-1}{2} \\ 0 & \frac{n_{y}}{2} & \frac{n_{y}-1}{2} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x_{\text {canonical }} \\ y_{\text {canonical }} \\ 1\end{array}\right]$

Viewport transformation

- In 3D, carry along z for the ride
- one extra row and column

$$
\mathbf{M}_{\mathrm{vp}}=\left[\begin{array}{cccc}
\frac{n_{x}}{2} & 0 & 0 & \frac{n_{x}-1}{2} \\
0 & \frac{n_{y}}{2} & 0 & \frac{n_{y}-1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Orthographic projection

- First generalization: different view rectangle
- retain the minus-z view direction

- specify view by left, right, top, bottom (as in RT)
- also near, far

Clipping planes

- In object-order systems we always use at least two clipping planes that further constrain the view volume
- near plane: parallel to view plane; things between it and the viewpoint will not be rendered
- far plane: also parallel; things behind it will not be rendered
- These planes are:
- partly to remove unnecessary stuff (e.g. behind the camera)
- but really to constrain the range of depths
(we'll see why later)

Orthographic projection

- We can implement this by mapping the view volume to the canonical view volume.
- This is just a 3D windowing transformation!

$$
\begin{gathered}
{\left[\begin{array}{cccc}
\frac{x_{h}^{\prime}-x_{l}^{\prime}}{x_{h}-x_{l}} & 0 & 0 & \frac{x_{l}^{\prime} x_{h}-x_{h}^{\prime} x_{l}}{x_{h}-x_{l}} \\
0 & \frac{y_{h}^{\prime}-y_{l}^{\prime}}{y_{h}-y_{l}} & 0 & \frac{y_{l}^{\prime} y_{h}-y_{h}^{\prime} y_{l}}{y_{h}-y_{l}} \\
0 & 0 & \frac{z_{h}^{\prime}-z_{l}^{\prime}}{z_{h}-z_{l}} & \frac{z_{l} z_{h} z_{h}^{\prime} z_{l}}{z_{h}-z_{l}} \\
0 & 0 & 0 & 1
\end{array}\right]} \\
\mathbf{M}_{\text {orth }}=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Camera and modeling matrices

- We worked out all the preceding transforms starting from eye coordinates
- before we do any of this stuff we need to transform into that space
- Transform from world (canonical) to eye space is traditionally called the viewing matrix
- it is the canonical-to-frame matrix for the camera frame
- that is, F_{c}^{-1}
- Remember that geometry would originally have been in the object's local coordinates; transform into world coordinates is called the modeling matrix, M_{m}
- Note many programs combine the two into a modelview matrix and just skip world coordinates

Viewing transformation

the camera matrix rewrites all coordinates in eye space

Orthographic transformation chain

- Start with coordinates in object's local coordinates
- Transform into world coords (modeling transform, M_{m})
- Transform into eye coords (camera xf., $M_{\text {cam }}=F_{c}{ }^{-1}$)
- Orthographic projection, $M_{\text {orth }}$
- Viewport transform, M_{vp}

$$
\mathbf{p}_{s}=\mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\mathrm{orth}} \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}} \mathbf{p}_{o}
$$

$\left[\begin{array}{c}x_{s} \\ y_{s} \\ z_{c} \\ 1\end{array}\right]=\left[\begin{array}{cccc}\frac{n_{x}}{2} & 0 & 0 & \frac{n_{x}-1}{2} \\ 0 & \frac{n_{y}}{2} & 0 & \frac{n_{y}-1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\ 0 & 0 & 0 & 1\end{array}\right]^{-1} \mathbf{M}_{\mathrm{m}}\left[\begin{array}{c}x_{o} \\ y_{o} \\ z_{o} \\ 1\end{array}\right]$

Perspective projection

similar triangles:

$$
\begin{aligned}
& \frac{y^{\prime}}{d}=\frac{y}{-z} \\
& y^{\prime}=-d y / z
\end{aligned}
$$

Homogeneous coordinates revisited

- Perspective requires division
- that is not part of affine transformations
- in affine, parallel lines stay parallel
- therefore not vanishing point
- therefore no rays converging on viewpoint
- "True" purpose of homogeneous coords: projection

Homogeneous coordinates revisited

- Introduced $w=1$ coordinate as a placeholder

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- used as a convenience for unifying translation with linear
- Can also allow arbitrary w

$$
\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
w x \\
w y \\
w z \\
w
\end{array}\right]
$$

Implications of w

$$
\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
w x \\
w y \\
w z \\
w
\end{array}\right]
$$

- All scalar multiples of a 4 -vector are equivalent
- When w is not zero, can divide by w
- therefore these points represent "normal" affine points
- When w is zero, it's a point at infinity, a.k.a. a direction
- this is the point where parallel lines intersect
- can also think of it as the vanishing point
- Digression on projective space

Perspective projection

to implement perspective, just move z to w :

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x / z \\
-d y / z \\
1
\end{array}\right] \sim\left[\begin{array}{l}
d x \\
d y \\
-z
\end{array}\right]=\left[\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

View volume: perspective

View volume: perspective (clipped)

Carrying depth through perspective

- Perspective has a varying denominator-can't preserve depth!
- Compromise: preserve depth on near and far planes

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right] \sim\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
-z
\end{array}\right]=\left[\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

- that is, choose a and b so that $z^{\prime}(n)=n$ and $z^{\prime}(f)=f$.

$$
\begin{aligned}
& \tilde{z}(z)=a z+b \\
& z^{\prime}(z)=\frac{\tilde{z}}{-z}=\frac{a z+b}{-z} \\
& \text { want } z^{\prime}(n)=n \text { and } z^{\prime}(f)=f \\
& \text { result: } a=-(n+f) \text { and } b=n f \text { (try it) }
\end{aligned}
$$

Official perspective matrix

- Use near plane distance as the projection distance
- i.e., $d=-n$
- Scale by -I to have fewer minus signs
- scaling the matrix does not change the projective transformation

$$
\mathbf{P}=\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Perspective projection matrix

- Product of perspective matrix with orth. projection matrix

$$
\mathbf{M}_{\text {per }}=\mathbf{M}_{\mathrm{orth}} \mathbf{P}
$$

$$
=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{l+r}{l-r} & 0 \\
0 & \frac{2 n}{t-b} & \frac{b+t}{b-t} & 0 \\
0 & 0 & \frac{f+n}{n-f} & \frac{2 f n}{f-n} \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Perspective transformation chain

- Transform into world coords (modeling transform, M_{m})
- Transform into eye coords (camera xf., $M_{c a m}=F_{c}{ }^{-1}$)
- Perspective matrix, P
- Orthographic projection, $M_{\text {orth }}$
- Viewport transform, M_{vp}

$$
\mathbf{p}_{s}=\mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\mathrm{orth}} \mathbf{P} \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}} \mathbf{p}_{o}
$$

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{c} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\frac{n_{x}}{2} & 0 & 0 & \frac{n_{x}-1}{2} \\
0 & \frac{n_{y}}{2} & 0 & \frac{n_{y}-1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right] \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}}\left[\begin{array}{c}
x_{o} \\
y_{o} \\
z_{o} \\
1
\end{array}\right]
$$

Pipeline of transformations

- Standard sequence of transforms

canonical view volume

