3D Transformations

CS 4620 Lecture 10

Translation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lllc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Scaling

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation about z axis

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation about x axis

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation about y axis

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Properties of Matrices

- Translations: linear part is the identity
- Scales: linear part is diagonal
- Rotations: linear part is orthogonal
-Columns of R are mutually orthonormal: $R R^{\top}=R^{\top} R=I$
-Also, determinant of R is $I .0[\operatorname{det}(R)=I]$

General Rotation Matrices

- A rotation in 2D is around a point
- A rotation in 3D is around an axis
-so 3D rotation is w.r.t a line, not just a point
-there are many more 3D rotations than 2D
- a 3D space around a given point, not just ID

Specifying rotations

- In 2D, a rotation just has an angle
- In 3D, specifying a rotation is more complex
- basic rotation about origin: unit vector (axis) and angle
- convention: positive rotation is CCW when vector is pointing at you
- Many ways to specify rotation
- Indirectly through frame transformations
-Directly through
- Euler angles: 3 angles about 3 axes
- (Axis, angle) rotation
- Quaternions

Euler angles

- An object can be oriented arbitrarily
- Euler angles: stack up three coord axis rotations
- ZYX case: Rz(thetaz)*Ry(thetay)*Rx(thetax)
- "heading, attitude, bank"
(common for airplanes)
- "pitch, yaw, roll"
(common for ground vehicles)
- "pan, tilt, roll"
(common for cameras)

Roll, yaw, Pitch

Specifying rotations: Euler rotations

- Euler angles

$$
\begin{aligned}
& R\left(\theta_{x}, \theta_{y}, \theta_{z}\right)=R_{z}\left(\theta_{z}\right) R_{y}\left(\theta_{y}\right) R_{x}\left(\theta_{x}\right) \\
& R\left(\theta_{x}, \theta_{y}, \theta_{z}\right)=\left[\begin{array}{cccc}
c_{y} c_{z} & s_{x} s_{y} c_{z}-c_{x} s_{z} & c_{x} s_{y} s_{z}-s_{x} c_{z} & 0 \\
c_{y} s_{z} & s_{x} s_{y} s_{z}+c_{x} c_{z} & c_{x} s_{y} s_{z}-s_{x} c_{z} & 0 \\
-s_{y} & s_{x} c_{y} & c_{x} c_{y} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \qquad \begin{array}{c}
c_{i}=\cos \left(\theta_{i}\right) \\
s_{i}=\sin \left(\theta_{i}\right)
\end{array}
\end{aligned}
$$

Matrices for axis-angle rotations

- Showed matrices for coordinate axis rotations
-but what if we want rotation about some other axis?
- Compute by composing elementary transforms
- transform rotation axis to align with x axis
- apply rotation
- inverse transform back into position
- Just as in 2D this can be interpreted as a similarity transform

Building general rotations

- Using elementary transforms you need three
- translate axis to pass through origin
- rotate about y to get into x - y plane
- rotate about z to align with x axis
- Alternative: construct frame and change coordinates
- choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis
-apply similarity transform $T=F R_{x}(\theta) F^{-1}$

Orthonormal frames in 3D

- Useful tools for constructing transformations
- Recall rigid motions
- affine transforms with pure rotation
- columns (and rows) form right handed ONB
- that is, an orthonormal basis

$$
F=\left[\begin{array}{cccc}
\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{p} \\
0 & 0 & 0 & 1
\end{array}\right] \quad{ }_{\mathbf{p}}^{\mathbf{w}} \xrightarrow{\mathbf{w}_{\mathbf{v}}}
$$

Building 3D frames

- Given a vector \mathbf{a} and a secondary vector \mathbf{b}
- The \mathbf{u} axis should be parallel to \mathbf{a}; the $\mathbf{u}-\mathbf{v}$ plane should contain \mathbf{b}
- $\mathbf{u}=\mathbf{u} /\|\mathbf{u}\|$
- $\mathbf{w}=\mathbf{u} \times \mathbf{b} ; \mathbf{w}=\mathbf{w} /\|\mathbf{w}\|$
- $\mathbf{v}=\mathbf{w} \times \mathbf{u}$
- Given just a vector a
- The \mathbf{u} axis should be parallel to \mathbf{a}; don't care about orientation about that axis
- Same process but choose arbitrary \mathbf{b} first
- Good choice is not near a: e.g. set smallest entry to I

Building general rotations

- Alternative: construct frame and change coordinates
- choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis
-apply similarity transform $T=F R_{x}(\theta) F^{-I}$
-interpretation: move to x axis, rotate, move back
- interpretation: rewrite u-axis rotation in new coordinates
- (each is equally valid)

$$
\left[\begin{array}{lll}
u_{x} & v_{x} & w_{x} \\
u_{y} & v_{y} & w_{y} \\
u_{z} & v_{z} & w_{z}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right]
$$

- (note above is linear transform; add affine coordinate)

Building general rotations

- Alternative: construct frame and change coordinates
- choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis
-apply similarity transform $T=F R_{x}(\theta) F^{-I}$
-interpretation: move to x axis, rotate, move back
- interpretation: rewrite u-axis rotation in new coordinates
- (each is equally valid)
- Sleeker alternative: Rodrigues' formula

Derivation of General Rotation Matrix

- Axis angle rotation

Axis-angle ONB

$$
\begin{aligned}
& \vec{x}_{\|}=(\vec{a} \cdot \vec{x}) \vec{a} \\
& \vec{x}_{\perp}=\left(\vec{x}-\vec{x}_{\|}\right)=(\vec{x}-(\vec{a} \cdot \vec{x}) \vec{a}) \\
& \vec{a} \times \vec{x}_{\perp}=\vec{a} \times\left(\vec{x}-\vec{x}_{\|}\right)=\vec{a} \times(\vec{x}-(\vec{a} \cdot \vec{x}) \vec{a})=\vec{a} \times \vec{x}
\end{aligned}
$$

Axis-angle rotation

$$
\begin{aligned}
& x_{\text {rotated }}=\vec{x}_{\|}+\vec{v} \\
& x_{\text {rotated }}=\alpha \vec{a}+\beta \vec{x}_{\perp}+\gamma \vec{a} \times \vec{x} \\
& \vec{v}=\cos \theta \vec{x}_{\perp}+\sin \theta \vec{a} \times \vec{x} \\
& x_{\text {rotated }}=\vec{x}_{\|}+\cos \theta \vec{x}_{\perp}+\sin \theta \vec{a} \times \vec{x} \\
& x_{\text {rotated }}=(\vec{a} \cdot \vec{x}) \vec{a}+\cos \theta(x-(\vec{a} \cdot \vec{x}) \vec{a})+\sin \theta \vec{a} \times \vec{x} \\
& x_{\text {rotated }}=(\vec{a} \cdot \vec{x})(1-\cos \theta) \vec{a}+\cos \theta \vec{x}+\sin \theta \vec{a} \times \vec{x}
\end{aligned}
$$

$$
\begin{aligned}
& x_{\text {rotated }}=(\vec{a} \cdot \vec{x})(1-\cos \theta) \vec{a}+\cos \theta \vec{x}+\sin \theta \vec{a} \times \vec{x} \\
& x_{\text {rotated }}=(\operatorname{Sym}(\vec{a})(1-\cos \theta)+I \cos \theta+\operatorname{Sken}(\vec{a}) \sin \theta) \vec{x}
\end{aligned}
$$

Rotation Matrix for Axis-Angle

$$
\begin{gathered}
x_{\text {rotated }}=(\vec{a} \cdot \vec{x})(1-\cos \theta) \vec{a}+\cos \theta \vec{x}+\sin \theta \vec{a} \times \vec{x} \\
x_{\text {rotated }}=(\operatorname{Sym}(\vec{a})(1-\cos \theta)+I \cos \theta+\operatorname{Skew}(\vec{a}) \sin \theta) \vec{x} \\
\operatorname{Sym}(\vec{a})=\left[\begin{array}{c}
a_{x} \\
a_{y} \\
a_{z} \\
0
\end{array}\right]\left[\begin{array}{llll}
a_{x} & a_{y} & a_{z} & 0
\end{array}\right]\left[\begin{array}{cccc}
a_{x}^{2} & a_{x} a_{y} & a_{x} a_{z} & 0 \\
a_{x} a_{y} & a_{y}^{2} & a_{y} a_{z} & 0 \\
a_{x} a_{z} & a_{y} a_{z} & a_{z}^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\operatorname{Skew}(\vec{a})=\left[\begin{array}{cccc}
0 & -a_{z} & a_{y} & 0 \\
a_{z} & 0 & -a_{x} & 0 \\
-a_{y} & a_{x} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Transforming normal vectors

- Transforming surface normals
- differences of points (and therefore tangents) transform OK
- normals do not --> use inverse transpose matrix

have: $\mathbf{t} \cdot \mathbf{n}=\mathbf{t}^{T} \mathbf{n}=0$
want: $M \mathbf{t} \cdot X \mathbf{n}=\mathbf{t}^{T} M^{T} X \mathbf{n}=0$
so set $X=\left(M^{T}\right)^{-1}$
then: $M \mathbf{t} \cdot X \mathbf{n}=\mathbf{t}^{T} M^{T}\left(M^{T}\right)^{-1} \mathbf{n}=\mathbf{t}^{T} \mathbf{n}=0$

Building transforms from points

- 2D affine transformation has 6 degrees of freedom (DOFs)
-this is the number of "knobs" we have to set to define one
- So, 6 constraints suffice to define the transformation
- handy kind of constraint: point \mathbf{p} maps to point \mathbf{q} (2 constraints at once)
- three point constraints add up to constrain all 6 DOFs (i.e. can map any triangle to any other triangle)
- 3D affine transformation has 12 degrees of freedom
- count them from the matrix entries we're allowed to change
- So, I2 constraints suffice to define the transformation
-in 3D, this is 4 point constraints
(i.e. can map any tetrahedron to any other tetrahedron)

