
© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Transformation Hierarchies

CS 4620 Lecture 9

1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Data structures with transforms

• Representing a drawing (“scene”)
• List of objects
• Transform for each object

– can use minimal primitives: ellipse is transformed circle
– transform applies to points of object

2

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Example

• Can represent drawing with flat list
– but editing operations require updating many transforms

3

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Groups of objects

• Treat a set of objects as one
• Introduce new object type: group

– contains list of references to member objects

• This makes the model into a tree
– interior nodes = groups
– leaf nodes = objects
– edges = membership of object in group

4

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Example

• Add group as a new object type
– lets the data structure reflect the drawing structure
– enables high-level editing by changing just one node

5

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Demo

• Adobe Illustrator as typical 2D drawing program
• Groups create transformation hierarchy
• Selecting inside groups allows editing internal nodes

6

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

The Scene Graph (tree)

• A name given to various kinds of graph structures
(nodes connected together) used to represent scenes

• Simplest form: tree
– just saw this
– every node has one parent
– leaf nodes are identified

with objects in the scene

7

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Concatenation and hierarchy

• Transforms associated with nodes or edges
• Each transform applies to all geometry below it

– want group transform to transform each member
– members already transformed—concatenate

• Frame transform for object is product of all matrices
along path from root
– each object’s transform describes relationship between its

local coordinates and its group’s coordinates
– frame-to-canonical transform is the result of repeatedly

changing coordinates from group to containing group

8

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Variants of the Scene Graph

• Parenting
– allow any object to have child objects
– every object is effectively also a group
– common in 3D modeling packages

• Instancing
– allow objects to belong to multiple parents/groups
– creates multiple copies of geometry

9

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Instances

• Simple idea: allow an object to be a member of more
than one group at once
– transform different in each case
– leads to linked copies
– single editing operation changes all instances

10

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Example

• Allow multiple references to nodes
– reflects more of drawing structure
– allows editing of repeated parts in one operation

11

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

The Scene Graph (with instances)

• With instances, there is no more tree
– an object that is instanced multiple

times has more than one parent

• Transform tree becomes DAG
– directed acyclic graph
– group is not allowed to contain

itself, even indirectly

• Transforms still accumulate
along path from root
– now paths from root to leaves

are identified with scene objects

12

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Implementing a hierarchy

• Object-oriented language is convenient
– define shapes and groups as derived from single class

abstract class Shape {
 void draw();
}

class Square extends Shape {
 void draw() {
 // draw unit square
 }
}

class Circle extends Shape {
 void draw() {
 // draw unit circle
 }
}

13

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Implementing traversal

• Pass a transform down the hierarchy
– before drawing, concatenate

abstract class Shape {
 void draw(Transform t_c);
}

class Square extends Shape {
 void draw(Transform t_c) {
 // draw t_c * unit square
 }
}

class Circle extends Shape {
 void draw(Transform t_c) {
 // draw t_c * unit circle
 }
}

class Group extends Shape {
 Transform t;
 ShapeList members;
 void draw(Transform t_c) {
 for (m in members) {
 m.draw(t_c * t);
 }
 }
}

14

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Basic Scene Graph operations

• Editing a transformation
– good to present usable UI

• Getting transform of object in canonical (world) frame
– traverse path from root to leaf

• Grouping and ungrouping
– can do these operations without moving anything
– group: insert identity node
– ungroup: remove node, push transform to children

• Reparenting
– move node from one parent to another
– can do without altering position

15

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Adding more than geometry

• Objects have properties besides shape
– color, shading parameters
– approximation parameters (e.g. precision of subdividing

curved surfaces into triangles)
– behavior in response to user input
– …

• Setting properties for entire groups is useful
– paint entire window green

• Many systems include some kind of property nodes
– in traversal they are read as, e.g., “set current color”

16

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 9

Scene Graph variations

• Where transforms go
– in every node
– on edges
– in group nodes only
– in special Transform nodes

• Tree vs. DAG
• Nodes for cameras and lights?

17

