Interpolated values in ray tracing

CS 4620 Lecture 6.5

Texture coordinates on meshes

- Texture coordinates are per-vertex data like vertex positions
- can think of them as a second position: each vertex has a position in 3D space and in 2D texture space
- How to come up with (u, v)s for points inside triangles?

09	19	29	39	49	59	69	79	89	99
08	18	28	38	48	58	68	78	88	98
07	17	27	3	4	57	67	77	87	97
06	16	26	3	6	46	5	66	76	86
05	15	25	35	45	55	6	75	85	95
04	14	24	34	44	54	64	7	84	94
03	13	23	33	43	53	65	73	83	93
02	12	22	32	42	52	62	72	82	92
01	11	21	31	41	51	61	71	81	91
00	10	20	30	40	50	60	70	80	90

Linear interpolation, I D domain

- Given values of a function $f(x)$ for two values of x, you can define in-between values by drawing a line

- there is a unique line through the two points
- can write down using slopes, intercepts
- ...or as a value added to $f(a)$
- ...or as a convex combination of $f(a)$ and $f(b)$

$$
\begin{aligned}
f(x) & =f(a)+\frac{x-a}{b-a}(f(b)-f(a)) \\
& =(1-\beta) f(a)+\beta f(b) \\
& =\alpha f(a)+\beta f(b)
\end{aligned}
$$

Linear interpolation in ID

- Alternate story
I. write x as convex combination of a and b

$$
x=\alpha a+\beta b \quad \text { where } \alpha+\beta=1
$$

2. use the same weights to compute $f(x)$ as a convex combination of $f(a)$ and $f(b)$

$$
f(x)=\alpha f(a)+\beta f(b)
$$

Linear interpolation in ID

Linear interpolation in 2D

- Use the alternate story:
I. Write \mathbf{x}, the point where you want a value, as a convex linear combination of the vertices

$$
\mathbf{x}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c} \quad \text { where } \alpha+\beta+\gamma=1
$$

2. Use the same weights to compute the interpolated value $f(\mathbf{x})$ from the values at the vertices, $f(\mathbf{a}), f(\mathbf{b})$, and $f(\mathbf{c})$

$$
f(\mathbf{x})=\alpha f(\mathbf{a})+\beta f(\mathbf{b})+\gamma f(\mathbf{c})
$$

```
See Shirley
Sec. 2.7
```


Interpolation in ray tracing

- When values are stored at vertices, use linear (barycentric) interpolation to define values across the whole surface that:
I. ...match the values at the vertices

2. ...are continuous across edges
3. ...are piecewise linear (linear over each triangle) as a function of 3D position, not screen position-more later

- How to compute interpolated values
I. during triangle intersection compute barycentric coords

2. use barycentric coords to average attributes given at vertices

What to interpolate?

- Texture coordinates
- without interpolating there can't really be textures
- Surface normals
- for smooth surfaces approximated with meshes
- use interpolated normal for shading in place of actual normal
- "shading normal" vs."geometric normal"

geometric normals

interpolated normals

