Textures and normals in ray tracing

CS 4620 Lecture 6

Texture mapping

- Objects have properties that vary across the surface

Texture Mapping

- So we make the shading parameters vary across the surface

Texture mapping

- Adds visual complexity; makes appealing images

Texture mapping

- Surface properties are not the same everywhere
- diffuse color $\left(k_{d}\right)$ varies due to changing pigmentation
- brightness $\left(k_{s}\right)$ and sharpenss (p) of specular highlight varies due to changing roughness and surface contamination
- Want functions that assign properties to points on the surface
- the surface is a 2D domain
- given a surface parameterization, just need function on plane
- images are a handy way to represent such functions
- can represent using any image representation
- raster texture images are very popular

A first definition

Texture mapping: a technique of defining surface properties (especially shading parameters) in such a way that they vary as a function of position on the surface.

- This is very simple!
- but it produces complex-looking effects

Examples

- Wood gym floor with smooth finish
- diffuse color k_{D} varies with position
- specular properties k_{S}, n are constant
- Glazed pot with finger prints
- diffuse and specular colors k_{D}, k_{S} are constant
- specular exponent n varies with position
- Adding dirt to painted surfaces
- Simulating stone, fabric, ...
- to approximate effects of small-scale geometry
- they look flat but are a lot better than nothing

Mapping textures to surfaces

- Usually the texture is an image (function of u, v)
- the big question of texture mapping: where on the surface does the image go?
- obvious only for a flat rectangle the same shape as the image
- otherwise more interesting

Mapping textures to surfaces

- "Putting the image on the surface"
- this means we need a function f that tells where each point on the image goes
- this looks a lot like a parametric surface function
- for parametric surfaces (e.g. sphere, cylinder) you get for free

$$
f: D \rightarrow S
$$

Texture coordinate functions

- Non-parametrically defined surfaces: more to do
- can't assign texture coordinates as we generate the surface
- need to have the inverse of the function f
- Texture
coordinate in.
$\phi: S \rightarrow \mathbb{R}^{2}$
- when shading \mathbf{P} get texture at $\phi(\mathbf{p})$

$$
\phi: S \rightarrow D
$$

Three spaces

- Surface lives in 3D world space
- Every point also has a place where it goes in the image and in the texture.

Texture coordinate functions

- Define texture image as a function
$T: D \rightarrow C$
- where C is the set of colors for the diffuse component
- Diffuse color (for example) at point \mathbf{p} is then

$$
k_{D}(\mathbf{p})=T(\phi(\mathbf{p}))
$$

Coordinate functions: parametric

- For parametric surfaces you already have coordinates
- Need to be able to invert the parameterization
- E.g. for a rectangle...
- E.g. for a sphere...

Examples of coordinate functions

- For non-parametric surfaces it is trickier
- directly use world coordinates
- need to project one out

Examples of coordinate functions

- Planar projection

Examples of coordinate functions

- Spherical projection

Examples of coordinate functions

- Cylindrical projection

Examples of coordinate functions

- Complex surfaces: project parts to parametric surfaces

[Tito Pagan]

Examples of coordinate functions

- Triangles
- specify (u, v) for each vertex
- define (u, v) for interior by linear (barycentric) interpolation

Example: UVMapper

http://www.uvmapper.com

© 2012 Kavita Bala • 24 (with previous instructors James/Marschner, and some slides courtesy Leonard McMillan)

Texture coordinate functions

- Mapping from S to D can be many-to-one
- that is, every surface point gets only one color assigned
- but it is OK (and in fact useful) for multiple surface points to be mapped to the same texture point
- e.g. repeating tiles

Pixels in texture images (texels)

- Related to texture coordinates in the same way as normalized image coordinate to pixel coordinates

Texture lookups and wrapping

- In shading calculation, when you need a texture value you perform a texture lookup
- Convert (u, v) texture coordinates to (i, j) texel coordinates, and read a value from the image
- simplest: round to nearest (nearest neighbor lookup)
- various ways to be smarter and get smoother results
- What if i and j are out of range?
- option I, clamp: take the nearest pixel that is in the image

$$
i_{\text {pixel }}=\max \left(0, \min \left(n_{x}-1, i_{\text {lookup }}\right)\right)
$$

- option 2, wrap: treat the texture as periodic, so that falling off the right side causes the look up to come in the left
$i_{\text {pixel }}=$ remainder $\left(i_{\text {lookup }}, n_{x}\right)$

Wrapping modes

Linear interpolation, I D domain

- Given values of a function $f(x)$ for two values of x, you can define in-between values by drawing a line

- there is a unique line through the two points
- can write down using slopes, intercepts
- ...or as a value added to $f(a)$
- ...or as a convex combination of $f(a)$ and $f(b)$

$$
\begin{aligned}
f(x) & =f(a)+\frac{x-a}{b-a}(f(b)-f(a)) \\
& =(1-\beta) f(a)+\beta f(b) \\
& =\alpha f(a)+\beta f(b)
\end{aligned}
$$

Linear interpolation in ID

- Alternate story
I. write x as convex combination of a and b

$$
x=\alpha a+\beta b \quad \text { where } \alpha+\beta=1
$$

2. use the same weights to compute $f(x)$ as a convex combination of $f(a)$ and $f(b)$

$$
f(x)=\alpha f(a)+\beta f(b)
$$

Linear interpolation in ID

Linear interpolation in 2D

- Use the alternate story:
I. Write \mathbf{x}, the point where you want a value, as a convex linear combination of the vertices

$$
\mathbf{x}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c} \quad \text { where } \alpha+\beta+\gamma=1
$$

2. Use the same weights to compute the interpolated value $f(\mathbf{x})$ from the values at the vertices, $f(\mathbf{a}), f(\mathbf{b})$, and $f(\mathbf{c})$

$$
f(\mathbf{x})=\alpha f(\mathbf{a})+\beta f(\mathbf{b})+\gamma f(\mathbf{c})
$$

```
See Shirley
Sec. 2.7
```


Interpolation in ray tracing

- When values are stored at vertices, use linear (barycentric) interpolation to define values across the whole surface that:
I. ...match the values at the vertices

2. ...are continuous across edges
3. ...are piecewise linear (linear over each triangle) as a function of 3D position, not screen position-more later

- How to compute interpolated values
I. during triangle intersection compute barycentric coords

2. use barycentric coords to average attributes given at vertices

Texture coordinates on meshes

- Texture coordinates become per-vertex data like vertex positions
- can think of them as a second position: each vertex has a position in 3D space and in 2D texure space
- How to come up with vertex (u,v)s?
- use any or all of the methods just discussed
- in practice this is how you implement those for curved surfaces approximated with triangles
- use some kind of optimization
- try to choose vertex (u, v) s to result in a smooth, low distortion map

A refined definition

Texture mapping: a set of techniques for defining functions on surfaces, for a variety of uses.

- Let's look at some examples of more general uses of texture maps.

3D textures

- Texture is a function of (u, v, w)
- can just evaluate texture at 3D surface point
- good for solid materials
- often defined procedurally

[Wolfe / SG97 Slide set]

