Viewing and Ray Tracing

CS 4620 Lecture 4

Projection

- To render an image of a 3D scene, we project it onto a plane
- Most common projection type is perspective projection

Two approaches to rendering

Two approaches to rendering

```
for each object in the scene {
    for each pixel in the image {
    if (object affects pixel) {
        do something
        }
    }
}
```

object order
or
rasterization

Two approaches to rendering

object order
Or
rasterization
for each pixel in the image \{ for each object in the scene \{ if (object affects pixel) \{ do something
\}
\}
\}
image order or
ray tracing

Two approaches to rendering

object order
Or
rasterization
for each pixel in the image \{ for each object in the scene \{
if (object affects pixel) \{ do something
\} will do this first
We will do this first
image order
or
ray tracing

Ray tracing idea

- Start with a pixel-what belongs at that pixel?
- Set of points that project to a point in the image: a ray

Ray tracing idea

- Start with a pixel-what belongs at that pixel?
- Set of points that project to a point in the image: a ray

Ray tracing idea

viewer (eye)
Γ

Ray tracing idea

viewer (eye)
ζ

Ray tracing idea

Ray tracing idea

Ray tracing algorithm

Generating eye rays-planar projection

- Ray origin (varying): pixel position on viewing window
- Ray direction (constant): view direction

Generating eye rays-perspective

- Ray origin (constant): viewpoint
- Ray direction (varying): toward pixel position on viewing window

Software interface for cameras

- Key operation: generate ray for image position

```
class Camera {
    ...
}
to width - I, height - I
```

- Modularity problem: Camera shouldn't have to worry about image resolution
- better solution: normalized coordinates

```
class Camera {
```

Ray generateRay(float u, float v); \longleftarrow args go from 0,0 to I, I \}

Specifying views in Ray I

```
<camera type="PerspectiveCamera">
    <viewPoint>10 4.2 6</viewPoint>
    <viewDir>-5 -2.1 -3</viewDir>
    <viewUp>0 l 0</viewUp>
    <projDistance>6</projDistance>
    <viewWidth>4</viewWidth>
    <viewHeight>2.25</viewHeight>
</camera>
<camera type="PerspectiveCamera">
    <viewPoint>10 4.2 6</viewPoint>
    <viewDir>-5 -2.1 -3</viewDir>
    <viewUp>0 l 0</viewUp>
    <projDistance>3</projDistance>
    <viewWidth>4</viewWidth>
    <viewHeight>2.25</viewHeight>
</camera>
```


Pixel-to-image mapping

- One last detail: exactly where are pixels located?

Ray intersection

Ray: a half line

- Standard representation: point \mathbf{p} and direction \mathbf{d}

$$
\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}
$$

- this is a parametric equation for the line
- lets us directly generate the points on the line
- if we restrict to $t>0$ then we have a ray
- note replacing \mathbf{d} with $\alpha \mathbf{d}$ doesn't change ray ($\alpha>0$)

Ray-sphere intersection: algebraic

- Condition I: point is on ray

$$
\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}
$$

- Condition 2: point is on sphere
- assume unit sphere; see Shirley or notes for general

$$
\begin{aligned}
& \|\mathbf{x}\|=1 \Leftrightarrow\|\mathbf{x}\|^{2}=1 \\
& f(\mathbf{x})=\mathbf{x} \cdot \mathbf{x}-1=0
\end{aligned}
$$

- Substitute:

$$
(\mathbf{p}+t \mathbf{d}) \cdot(\mathbf{p}+t \mathbf{d})-1=0
$$

- this is a quadratic equation in t

Ray-sphere intersection: algebraic

- Solution for t by quadratic formula:

$$
\begin{aligned}
& t=\frac{-\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^{2}-(\mathbf{d} \cdot \mathbf{d})(\mathbf{p} \cdot \mathbf{p}-1)}}{\mathbf{d} \cdot \mathbf{d}} \\
& t=-\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^{2}-\mathbf{p} \cdot \mathbf{p}+1}
\end{aligned}
$$

- simpler form holds when \mathbf{d} is a unit vector but we won't assume this in practice (reason later)
- I'll use the unit-vector form to make the geometric interpretation

Ray-sphere intersection: geometric

Ray-triangle intersection

- Condition I: point is on ray

$$
\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}
$$

- Condition 2: point is on plane

$$
(\mathbf{x}-\mathbf{a}) \cdot \mathbf{n}=0
$$

- Condition 3: point is on the inside of all three edges
- First solve I\&2 (ray-plane intersection)
- substitute and solve for t :

$$
\begin{array}{r}
(\mathbf{p}+t \mathbf{d}-\mathbf{a}) \cdot \mathbf{n}=0 \\
t=\frac{(\mathbf{a}-\mathbf{p}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}
\end{array}
$$

Ray-triangle intersection

- In plane, triangle is the intersection of 3 half spaces

Ray-triangle intersection

- In plane, triangle is the intersection of 3 half spaces

Ray-triangle intersection

- In plane, triangle is the intersection of 3 half spaces

Ray-triangle intersection

- In plane, triangle is the intersection of 3 half spaces

Deciding about insideness

- Need to check whether hit point is inside 3 edges
- easiest to do in 2D coordinates on the plane
- Will also need to know where we are in the triangle
- for textures, shading, etc. ... next couple of lectures
- Efficient solution: transform to coordinates aligned to the triangle

Barycentric coordinates

- A coordinate system for triangles
- algebraic viewpoint:

$$
\begin{aligned}
& \mathbf{p}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c} \\
& \alpha+\beta+\gamma=1
\end{aligned}
$$

- geometric viewpoint (areas):
- Triangle interior test:
$\alpha>0 ; \quad \beta>0 ; \quad \gamma>0$

Barycentric coordinates

- A coordinate system for triangles
- geometric viewpoint: distances

- linear viewpoint: basis of edges

$$
\begin{aligned}
& \alpha=1-\beta-\gamma \\
& \mathbf{p}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
\end{aligned}
$$

Barycentric coordinates

- Linear viewpoint: basis for the plane

- in this view, the triangle interior test is just

$$
\beta>0 ; \quad \gamma>0 ; \quad \beta+\gamma<1
$$

Barycentric ray-triangle intersection

- Every point on the plane can be written in the form:

$$
\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
$$

for some numbers β and γ.

- If the point is also on the ray then it is

$$
\mathbf{p}+t \mathbf{d}
$$

for some number t.

- Set them equal: 3 linear equations in 3 variables

$$
\mathbf{p}+t \mathbf{d}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
$$

\ldots..solve them to get t, β, and γ all at once!

Barycentric ray-triangle intersection

$$
\begin{aligned}
\mathbf{p}+t \mathbf{d} & =\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a}) \\
\beta(\mathbf{a}-\mathbf{b})+\gamma(\mathbf{a}-\mathbf{c})+t \mathbf{d} & =\mathbf{a}-\mathbf{p} \\
{\left[\begin{array}{lll}
\mathbf{a}-\mathbf{b} & \mathbf{a}-\mathbf{c} & \mathbf{d}
\end{array}\right]\left[\begin{array}{l}
\beta \\
\gamma \\
t
\end{array}\right] } & =[\mathbf{a}-\mathbf{p}] \\
{\left[\begin{array}{lll}
x_{a}-x_{b} & x_{a}-x_{c} & x_{d} \\
y_{a}-y_{b} & y_{a}-y_{c} & y_{d} \\
z_{a}-z_{b} & z_{a}-z_{c} & z_{d}
\end{array}\right]\left[\begin{array}{l}
\beta \\
\gamma \\
t
\end{array}\right] } & =\left[\begin{array}{l}
x_{a}-x_{p} \\
y_{a}-y_{p} \\
z_{a}-z_{p}
\end{array}\right]
\end{aligned}
$$

Cramer's rule is a good fast way to solve this system (see text Ch. 2 and Ch. 4 for details)

Ray intersection in software

- All surfaces need to be able to intersect rays with themselves. ray to be

Image so far

- With eye ray generation and sphere intersection

```
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
    for 0<= ix < nx {
    ray = camera.getRay(ix, iy);
    hitSurface, t = s.intersect(ray, 0, +inf)
    if hitSurface is not null
        image.set(ix, iy, white);
    }
```


Ray intersection in software

- Scenes usually have many objects
- Need to find the first intersection along the ray
- that is, the one with the smallest positive t value
- Loop over objects
- ignore those that don't intersect
- keep track of the closest seen so far
- Convenient to give rays an ending t value for this purpose (then they are really segments)

Intersection against many shapes

- The basic idea is:

```
intersect (ray, tMin, tMax) {
    tBest = +inf; firstSurface = null;
    for surface in surfaceList {
            hitSurface, t = surface.intersect(ray, tMin, tBest);
            if hitSurface is not null {
            tBest = t;
            firstSurface = hitSurface;
            }
    }
return hitSurface, tBest;
}
```

- this is linear in the number of shapes but there are sublinear methods (acceleration structures)

