
© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Viewing and Ray Tracing

CS 4620 Lecture 4

1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Projection

• To render an image of a 3D scene, we project it onto a
plane

• Most common projection type is perspective projection

2

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Two approaches to rendering

3

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Two approaches to rendering

3

for each object in the scene {
for each pixel in the image {

if (object affects pixel) {
do something

}
}

}
object order

or
rasterization

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Two approaches to rendering

3

for each object in the scene {
for each pixel in the image {

if (object affects pixel) {
do something

}
}

}
object order

or
rasterization

image order
or

ray tracing

for each pixel in the image {
for each object in the scene {

if (object affects pixel) {
do something

}
}

}

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Two approaches to rendering

3

for each object in the scene {
for each pixel in the image {

if (object affects pixel) {
do something

}
}

}
object order

or
rasterization

image order
or

ray tracing

for each pixel in the image {
for each object in the scene {

if (object affects pixel) {
do something

}
}

}
We will do this first

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray tracing idea

• Start with a pixel—what belongs at that pixel?
• Set of points that project to a point in the image: a ray

4

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray tracing idea

• Start with a pixel—what belongs at that pixel?
• Set of points that project to a point in the image: a ray

4

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray tracing idea

5

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray tracing idea

5

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray tracing idea

5

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray tracing idea

5

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray tracing algorithm

for each pixel {
 compute viewing ray
 intersect ray with scene
 compute illumination at visible point
 put result into image
}

6

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Generating eye rays—planar projection

• Ray origin (varying): pixel position on viewing window
• Ray direction (constant): view direction

7

viewing ray

viewing
window

pixel
position

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Generating eye rays—perspective

• Ray origin (constant): viewpoint
• Ray direction (varying): toward pixel position on

viewing window

8

viewing ray

pixel
position

viewing
window

viewpoint

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Software interface for cameras

• Key operation: generate ray for image position

• Modularity problem: Camera shouldn’t have to worry
about image resolution
– better solution: normalized coordinates

9

class Camera {
 …

Ray generateRay(int col, int row);
}

class Camera {
 …

Ray generateRay(float u, float v);
}

args go from 0, 0
to width – 1, height – 1

args go from 0, 0 to 1, 1

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Specifying views in Ray 1

10

 <camera type="PerspectiveCamera">
 <viewPoint>10 4.2 6</viewPoint>
 <viewDir>-5 -2.1 -3</viewDir>
 <viewUp>0 1 0</viewUp>
 <projDistance>6</projDistance>
 <viewWidth>4</viewWidth>
 <viewHeight>2.25</viewHeight>
 </camera>

 <camera type="PerspectiveCamera">
 <viewPoint>10 4.2 6</viewPoint>
 <viewDir>-5 -2.1 -3</viewDir>
 <viewUp>0 1 0</viewUp>
 <projDistance>3</projDistance>
 <viewWidth>4</viewWidth>
 <viewHeight>2.25</viewHeight>
 </camera>

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Pixel-to-image mapping

• One last detail: exactly where are pixels located?

11

✐

✐

✐

✐

✐

✐

✐

✐

58 3. Raster Images

Figure 3.10. Coordinates of a four pixel by three pixel screen. Note that in some APIs the
y-axis will point downwards.

Again, these coordinates are simply conventions, but they will be important

to remember later when implementing cameras and viewing transformations.

3.2.1 Pixel Values

So far we have described the values of pixels in terms of real numbers, represent-

ing intensity (possibly separately for red, green, and blue) at a point in the image.

This suggests that images should be arrays of floating-point numbers, with either

one (for grayscale, or black and white, images) or three (for RGB color images)

32-bit floating point numbers stored per pixel. This format is sometimes used,

when its precision and range of values are needed, but images have a lot of pix-

els and memory and bandwidth for storing and transmitting images are invariably

scarce. Just one ten-megapixel photograph would consume about 115 MB of

RAM in this format.Why 115 MB and not 120
MB?

Less range is required for images that are meant to be displayed directly.

While the range of possible light intensities is unbounded in principle, any given

device has a decidedly finite maximum intensity, so in many contexts it is per-

fectly sufficient for pixels to have a bounded range, usually taken to be [0, 1] for
simplicity. For instance, the possible values in an 8-bit image are 0, 1/255, 2/255, . . . , 254/255, 1.The denominator of 255,

rather than 256, is
awkward, but being able to
represent 0 and 1 exactly is
important.

Images stored with floating point numbers, allowing a wide range of values, are

often called high dynamic range (HDR) images to distinguish them from fixed-

range, or low dynamic range (LDR) images that are stored with integers. See

✐

✐

✐

✐

✐

✐

✐

✐

4.4. Orthographic views 73

u

e

v

w

ue
w

v

Parallel projection
same direction, different origins

Perspective projection
same origin, different directions

Figure 4.8. Ray generation using the camera frame. Left: in an orthographic view, the rays

start at the pixels’ locations on the image plane, and all share the same direction, which is

equal to the view direction. Right: in a perspective view, the rays start at the viewpoint, and

each ray’s direction is defined by the line through the viewpoint, e, and the pixel’s location on

the image plane.

of the image, as measured from e along the v direction. Usually l < 0 < r and
b < 0 < t. (See Figure 4.8.) Many systems assume

l = −r and b = −t so
that a width and height

suffice.

In Section 3.2 we discussed pixel coordinates in an image. To fit an image

with nx × ny pixels into a rectangle of size (r − l) × (t − b), the pixels are
spaced a distance (r − l)/nx apart horizontally and (t − b)/ny apart vertically,

with a half-pixel space around the edge to center the pixel grid within the image

rectangle. This means that the pixel at position (i, j) in the raster image has the
position

u = l + (r − l)(i + 0.5)/nx

v = b + (t − b)(j + 0.5)/ny

(4.1)

where (u, v) are the coordinates of the pixel’s position on the image plane, mea-
sured with respect to the origin e and the basis {u,v}. With l and r both

specified, there is

redundancy: moving the

viewpoint a bit to the right

and correspondingly

decreasing l and r will not

change the view (and

similarly on the v axis).

In an orthographic view we can simply use the pixel’s image-plane posi-

tion as the ray’s starting point, and we already know the ray’s direction is the

view direction. The procedure for generating orthographic viewing rays is then:

compute u and v using (4.1)
ray.direction← −w

ray.origin← e + uu + v v

It’s very simple to make an oblique parallel view: just allow the image plane

normal, w, to be specified separately from the view direction; the procedure is

otherwise exactly the same.

u
=

l

u
=

r

v = b

v = t
j

i

i =
 –

.5

i =
 3

.5

j = 2.5

j = –.5 u
=

0

u
=

1 v = 0

v = 1

u = (i+ 0.5)/n
x

v = (j + 0.5)/n
y

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray intersection

12

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray: a half line

• Standard representation: point p and direction d

– this is a parametric equation for the line
– lets us directly generate the points on the line
– if we restrict to t > 0 then we have a ray
– note replacing d with αd doesn’t change ray (α > 0)

13

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray-sphere intersection: algebraic

• Condition 1: point is on ray

• Condition 2: point is on sphere
– assume unit sphere; see Shirley or notes for general

• Substitute:

– this is a quadratic equation in t

14

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray-sphere intersection: algebraic

• Solution for t by quadratic formula:

– simpler form holds when d is a unit vector
but we won’t assume this in practice (reason later)

– I’ll use the unit-vector form to make the geometric
interpretation

15

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray-sphere intersection: geometric

16

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray-triangle intersection

• Condition 1: point is on ray

• Condition 2: point is on plane

• Condition 3: point is on the inside of all three edges
• First solve 1&2 (ray–plane intersection)

– substitute and solve for t:

17

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces

18

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces

18

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces

18

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces

18

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Deciding about insideness

• Need to check whether hit point is inside 3 edges
– easiest to do in 2D coordinates on the plane

• Will also need to know where we are in the triangle
– for textures, shading, etc. … next couple of lectures

• Efficient solution: transform to coordinates aligned to
the triangle

19

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Barycentric coordinates

• A coordinate system for triangles
– algebraic viewpoint:

– geometric viewpoint (areas):

• Triangle interior test:

[S
hi

rle
y

20
00

]

20

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Barycentric coordinates

• A coordinate system for triangles
– geometric viewpoint: distances

– linear viewpoint: basis of edges

21

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Barycentric coordinates

• Linear viewpoint: basis for the plane

– in this view, the triangle interior test is just

[S
hi

rle
y

20
00

]

22

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Barycentric ray-triangle intersection

• Every point on the plane can be written in the form:

for some numbers β and .
• If the point is also on the ray then it is

for some number t.
• Set them equal: 3 linear equations in 3 variables

…solve them to get t, β, and all at once!

23

p+ td

a+ �(b� a) + �(c� a)

p+ td = a+ �(b� a) + �(c� a)

�

�

p+ td = a+ �(b� a) + �(c� a)

�(a� b) + �(a� c) + td = a� p

⇥
a� b a� c d

⇤
2

4
�

�

t

3

5 =
⇥
a� p

⇤

2

4
xa � xb xa � xc xd

ya � yb ya � yc yd

za � zb za � zc zd

3

5

2

4
�

�

t

3

5 =

2

4
xa � xp

ya � yp

za � zp

3

5

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Barycentric ray-triangle intersection

24

Cramer’s rule is a good fast way to solve this system

(see text Ch. 2 and Ch. 4 for details)

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray intersection in software

• All surfaces need to be able to intersect rays with
themselves.

25

class Surface {
 …

abstract boolean intersect(IntersectionRecord result, Ray r);
}

was there an
intersection? information about

first intersection

ray to be
intersected

class IntersectionRecord {
 float t;
 Vector3 hitLocation;
 Vector3 normal;
 …
}

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Image so far

• With eye ray generation and sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
 for 0 <= ix < nx {
 ray = camera.getRay(ix, iy);
 hitSurface, t = s.intersect(ray, 0, +inf)
 if hitSurface is not null
 image.set(ix, iy, white);
 }

26

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Ray intersection in software

• Scenes usually have many objects
• Need to find the first intersection along the ray

– that is, the one with the smallest positive t value

• Loop over objects
– ignore those that don’t intersect
– keep track of the closest seen so far
– Convenient to give rays an ending

t value for this purpose (then
they are really segments)

27

• The basic idea is:

– this is linear in the number of shapes
but there are sublinear methods (acceleration structures)

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 4

Intersection against many shapes

intersect (ray, tMin, tMax) {
 tBest = +inf; firstSurface = null;
 for surface in surfaceList {
 hitSurface, t = surface.intersect(ray, tMin, tBest);
 if hitSurface is not null {
 tBest = t;
 firstSurface = hitSurface;
 }
 }
return hitSurface, tBest;
}

28

