Triangle meshes I

CS 4620 Lecture 2

Andrzej Barabasz
spheres

approximate sphere

PATRIOT Engineering
finite element analysis

Ottawa Convention Center

A small triangle mesh

12 triangles, 8 vertices

A large mesh

10 million triangles
from a high-resolution 3D scan

Google earth

Triangles

- Defined by three vertices
- Lives in the plane containing those vertices
- Vector normal to plane is the triangle's normal
- Conventions (for this class, not everyone agrees):
- vertices are counter-clockwise as seen from the "outside" or "front"
- surface normal points towards the outside ("outward facing normals")

Triangle meshes

- A bunch of triangles in 3D space that are connected together to form a surface
- Geometrically, a mesh is a piecewise planar surface
- almost everywhere, it is planar
- exceptions are at the edges where triangles join
- Often, it's a piecewise planar approximation of a smooth surface
- in this case the creases between triangles are artifacts-we don't want to see them

Representation of triangle meshes

- Compactness
- Efficiency for rendering
- enumerate all triangles as triples of 3D points
- Efficiency of queries
- all vertices of a triangle
- all triangles around a vertex
- neighboring triangles of a triangle
- (need depends on application)
- finding triangle strips
- computing subdivision surfaces
- mesh editing

Representations for triangle meshes

- Separate triangles
- Indexed triangle set

crucial for
first assignment
- shared vertices
- Triangle strips and triangle fans
- compression schemes for fast transmission
- Triangle-neighbor data structure
- supports adjacency queries
- Winged-edge data structure
- supports general polygon meshes

Separate triangles

Separate triangles

- array of triples of points
- float[$\left.n_{T}\right][3][3]$: about 72 bytes per vertex
- 2 triangles per vertex (on average)
- 3 vertices per triangle
- 3 coordinates per vertex
- 4 bytes per coordinate (float)
- various problems
- wastes space (each vertex stored 6 times)
- cracks due to roundoff
- difficulty of finding neighbors at all

Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices

```
Triangle {
    Vertex vertex[3];
    }
Vertex {
    float position[3]; // or other data
    }
// ... or ...
Mesh {
    float verts[nv][3]; // vertex positions (or other data)
    int tInd[nt][3]; // vertex indices
    }
```


Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices

```
Triangle {
    Vertex vertex[3];
    }
Vertex {
    float position[3]; // or other data
    }
// ... or ...
Mesh {
    float verts[nv][3]; // vertex positions (or other data)
    int tInd[nt][3]; // vertex indices
    }
```


Indexed triangle set

Estimating storage space

- $n_{T}=\#$ tris; $n_{V}=\#$ verts; $n_{E}=\#$ edges
- Euler: $n_{V}-n_{E}+n_{T}=2$ for a simple closed surface
- and in general sums to small integer
- argument for implication that $n_{T}: n_{E}: n_{V}$ is about 2:3:1

Indexed triangle set

- array of vertex positions
- float[$\left.n_{V}\right][3]: 12$ bytes per vertex
- (3 coordinates $\times 4$ bytes) per vertex
- array of triples of indices (per triangle)
$-\operatorname{int}\left[n_{T}\right][3]$: about 24 bytes per vertex
- 2 triangles per vertex (on average)
- (3 indices $x 4$ bytes) per triangle
- total storage: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined

Data on meshes

- Often need to store additional information besides just the geometry
- Can store additional data at faces, vertices, or edges
- Examples
- colors stored on faces, for faceted objects
- information about sharp creases stored at edges
- any quantity that varies continuously (without sudden changes, or discontinuities) gets stored at vertices

Key types of vertex data

- Surface normals
- when a mesh is approximating a curved surface, store normals at vertices
- Texture coordinates
- 2D coordinates that tell you how to paste images on the surface
- Positions
- at some level this is just another piece of data
- position varies continuously between vertices

Differential geometry I 0 I

- Tangent plane
- at a point on a smooth surface in 3D, there is a unique plane tangent to the surface, called the tangent plane
- Normal vector
- vector perpendicular to a surface (that is, to the tangent plane)
- only unique for smooth surfaces (not at corners, edges)

Surface parameterization

- A surface in 3D is a two-dimensional thing
- Sometimes we need 2D coordinates for points on the surface
- Defining these coordinates is parameterizing the surface
- Examples:
- cartesian coordinates on a rectangle (or other planar shape)
- cylindrical coordinates (θ, y) on a cylinder
- latitude and longitude on the Earth's surface
- spherical coordinates (θ, ϕ) on a sphere

Example: unit sphere

- position:

$$
\begin{aligned}
& x=\cos \theta \sin \phi \\
& y=\sin \theta \\
& z=\cos \theta \cos \phi
\end{aligned}
$$

- normal is position (easy!)

How to think about vertex normals

- Piecewise planar approximation converges pretty quickly to the smooth geometry as the number of triangles increases
- for mathematicians: error is $O\left(h^{2}\right)$
- But the surface normals don't converge so well
- normal is constant over each triangle, with discontinuous jumps across edges
- for mathematicians: error is only $O(h)$
- Better: store the "real" normal at each vertex, and interpolate to get normals that vary gradually across triangles

Interpolated normals-2D example

- Approximating circle with increasingly many segments
- Max error in position error drops by factor of 4 at each step
- Max error in normal only drops by factor of 2

Triangle strips

- Take advantage of the mesh property
- each triangle is usually adjacent to the previous

- let every vertex create a triangle by reusing the second and third vertices of the previous triangle
- every sequence of three vertices produces a triangle (but not in the same order)
- e.g., $0, I, 2,3,4,5,6,7, \ldots$ leads to
(0 \| 2), (2 \| 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), ...
- for long strips, this requires about one index per triangle

Triangle strips

verts[0]	
verts[1]	x_{0}, y_{0}, z_{0}
x_{1}, y_{1}, z_{1}	
x_{2}, y_{2}, z_{2}	
x_{3}, y_{3}, z_{3}	

tStrip[0]	$4,0,1,2,5,8$
tStrip[1]	$6,9,0,3,2,10,7$
	\vdots

Triangle strips

verts[0]	
verts[1]	x_{0}, y_{0}, z_{0}
x_{1}, y_{1}, z_{1}	
x_{2}, y_{2}, z_{2}	
x_{3}, y_{3}, z_{3}	

Triangle strips

- array of vertex positions
- float[$\left.n_{V}\right][3]$: 12 bytes per vertex
- (3 coordinates $\times 4$ bytes) per vertex
- array of index lists
$-\operatorname{int}\left[n_{S}\right][$ variable]: $2+n$ indices per strip
- on average, $(I+\varepsilon)$ indices per triangle (assuming long strips)
- 2 triangles per vertex (on average)
- about 4 bytes per triangle (on average)
- total is 20 bytes per vertex (limiting best case)
- factor of 3.6 over separate triangles; l. 8 over indexed mesh

Triangle fans

- Same idea as triangle strips, but keep oldest rather than newest
- every sequence of three vertices produces a triangle
- e.g., $0, I, 2,3,4,5, \ldots$ leads to
(0 I 2), (0 2 3), (0 3 4), (0 4 5)
- for long fans, this requires about one index per triangle
- Memory considerations exactly the same as triangle strip

Topology vs. geometry

- two completely separate issues:
- mesh topology: how the triangles are connected (ignoring the positions entirely)
- geometry: where the triangles are in 3D space

Topology/geometry examples

- same geometry, different mesh topology:

- same mesh topology, different geometry:

Validity of triangle meshes

- in many cases we care about the mesh being able to bound a region of space nicely
- in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)
- two completely separate issues:
- topology: how the triangles are connected (ignoring the positions entirely)
- geometry: where the triangles are in 3D space

Topological validity

- strongest property: be a manifold
- this means that no points should be "special"
- interior points are fine
- edge points: each edge must have exactly 2 triangles
- vertex points: each vertex must have one loop of triangles
- slightly looser: manifold with boundary
- weaken rules to allow boundaries

Topological validity

- Consistent orientation
- Which side is the "front" or "outside" of the surface and which is the "back" or "inside?"
- rule: you are on the outside when you see the vertices in counter-clockwise order
- in mesh, neighboring triangles should agree about which side is the front!
- caution: not always possible

OK

bad

© 2014 Steve Marschner • 35

Geometric validity

- generally want non-self-intersecting surface
- hard to guarantee in general
- because far-apart parts of mesh might intersect

