
CS 4620 Practicum Programming Assignment 6
Animation

out: Friday 14th November 2014
due: : Monday 24th November 2014

1 Introduction

In this assignment, we will explore a common topic in animation: key frame animation. You will
solve some written problems to get a better understanding of the underlying theory of animations
and then write code to animate scenes using key frames.

Key frame animation is a technique wherein we define the layout of a scene at certain times (key
frames), and we create frames between them by cleverly interpolating between our defined key
frames. This rapid rendering of scenes gives us the illusion of animation. The award winning
animation short film Hunger (1974) was one of the first applications of key frame animation.
http://bit.ly/1EDvU6R

2 Written Problem 1 - Interpolating in 2D

On another page are pictures of a square object (with its edges marked so you can tell them apart)
under three pairs of linear transformations. For each pair:

1. Write the 2x2 transformation matrices for each pose; call them M0 and M1.

2. Write the matrix M lin
0.5 by linearly interpolating elementwise halfway between M0 and M1.

3. Write each of these two poses in the form Mi = RiSi, where Ri is a rotation and Si is a
symmetric matrix with positive entries on the diagonal.

4. Use this decomposition to interpolate a matrix M
pol
0.5 that is halfway between M0 and M1.

5. Draw the two intermediate states of the object (you can print out the PDF and draw on it if
you want).

1

http://bit.ly/1EDvU6R
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Figure 1: Written Problem 1



CS 4620—Animation 3

3 Written Problem 2 - Interpolating 3D Rotations

Using the egl.math.Quat class to convert between quaternions and rotation matrices.

1. Write down the quaternion q1 that corresponds to the identity rotation and the quaternion q2
that corresponds to a rotation of 180 degrees around the x axis.

2. Using the formula for spherical linear interpolation, generate the quaternion q3 that is one-
fourth of the way from q1 to q2. What are the axis and angle of the rotation q3 represents?

3. Convert q3 to a 3x3 rotation matrix M(q3). Verify that starting with the identity and applying
this matrix 4 times results in the rotation corresponding to q2.

4. Write down the matrix corresponding to a rotation of 90 degrees around x followed by a
rotation of 90 degrees around y, and convert it to a quaternion q4. Do the same with y and
then z, producing q5.

5. Using the formula for spherical linear interpolation, generate the quaternion q6 that is one-
fourth of the way from q4 to q5. What are the axis and angle of the rotation q6 represents?

6. Compute the quaternion q7 for the rotation that rotates from q4 to q6—that is, M(q6) =
M(q7)M(q4). (It might be easiest to do this by converting everything to matrices, determin-
ing the rotation, and then converting back.) Verify that starting with M(q4) and applying
M(q7) four times, you end up at M(q5).

7. What are the axis and angle of the rotation q7 represents? Spend a few minutes holding a
book and rotating it around its various axes, until it seems clear that this is the right answer.

4 Problem 1: Keyframe Animation

4.1 Getting Started

For the programming assignment, we will implement the primary features of a keyframe anima-
tion framework. A new commit has been pushed to the class Github page in the master branch.
We recommend switching to your master branch, pulling this commit, and creating a new branch
(e.g. A6 solution) and committing your work there. This new commit contains all the frame-
work changes and additions necessary for this project. For this project, we use lwjgl, so you
may need to update some settings of your build to have this external library work properly. We
have included the correct jar files, but you may need to configure your native library location. To
do this in Eclipse, go to Project -> Properties -> Java Build Path -> Select
Libraries -> Select the lwjgl Drop Down Menu -> Modify Native Library
Location. Modify this setting so that it matches your OS.

We have added a framework in the package cs4620.anim that stores keyframes and provides an
interface for editing them; you will build on that framework and implement a few main features that
enable correct interpolation of animations between keyframes.



CS 4620—Animation 4

4.2 The Interface

At first glance, your window may not like the one in the picture. Hover over the bottom of the win-
dow to reveal the timeline, complete with highlighted keyframes. We have implemented a keyboard
based animation interface:

• Moving between frames:

[ ]

: We use the [ and ] keys to move to the left and right keyframes.

• Adding a frame: To add a keyframe at the current frame, press the n key. The new keyframe
will be initialized to the current state of the scene when you clicked the button.

• Editing a keyframe: To edit a keyframe, navigate to that keyframe, edit the transformations at
that state, and press n.

• Removing a keyframe: Navigate to a keyframe and press the m key to remove a key frame.

• Playing and pausing the animation: The \ key is used to play or pause the animation.

4.3 Keyframes

For this problem, we have extended the scene graph system to store information about multiple
keyframes. The AnimTimeline class stores a:

• TreeSet of AnimKeyFrame . Each key frame contains a frame index number and a 4 x 4
matrix transformation.

• A SceneObject that it operates on.

Every time the update loop is called in the Game loop, updateTransformations is called
in AnimationEngine which sends transformation events to the corresponding SceneObjects.

We have already implemented the functionality of adding and deleting keyframes from the scene.

4.4 Functionality to Implement

You will implement:

• void updateTransformations()
A method that iterates through all the animation timelines, and calls sendEvent on the
scene with the correct interpolated transformation on the object. For example, if the object
on the AnimTimeline is called object, then
scene.sendEvent(new SceneTransformationEvent(object)); would be-
gin the propagation of the event.
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Figure 2: The keyframe animation interface (The timeline appears on hover).
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4.5 Interpolation Overview

4.5.1 Naive Approach

When computing the interpolation of two transformations, the naive approach is to linearly interpo-
late each of the 12 free values of the 4 x 4 matrix. You may want to try this out and see why this
doesn’t work so well. See what happens when you rotate an object 180 degrees!

4.5.2 The more accurate approach

Linearly interpolating rotations by value does not work very well. While scales and translations
can be linearly interpolated to give good results, the same doesn’t apply to rotations. So what can
we do? It turns out there is a good way to interpolate between two pure rotations: first express
the rotations as quaternions, then use a method called slerp, or spherical linear interpolation, to
interpolate between the quaternions.

Therefore, the general idea for a more accurate interpolation is:

• Decompose the surrounding 4x4 matrix transformations around the current key frame into
rotations, translations, and scales.

• Linearly interpolate the translations and scales, and interpolate the rotations by converting to
quaternions, slerping, and then converting the result back to a rotation matrix.

• Recompose the constituents to give a transformation for the current frame.

4.5.3 Decomposing transformations

A homogenous transformation M is a 4x4 matrix that can be decomposed firstly as follows

[
RS T
0 1

]
Here, T represents the translation, R the rotation and S the scale. So just how do we decompose
the upper left 3x3 portion of the matrix into its constituents? Polar decomposition.

We have conveniently written the egl.math.Matrix3.polar decomp function for you. There
is more about quaternions, spherical linear interpolation, and the polar decomposition, in the Ani-
mation lecture slides and notes, and in Chapter 17 of the textbook.

4.6 Slerp

Spherical linear interpolation occurs between quaternions, so we need to convert our representation
of R as a 3 x 3 matrix into a quaternion for each keyframe, and then convert the interpolated
quaternion back to a matrix.
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4.6.1 Converting between Rotation Matrices and Quaternions

We do not ask you to implement the inter-conversion between rotation matrices and Quaternions.
You can use the class egl.math.Quat to convert from a rotation matrix (using the appropriate
Quat constructor) and to a rotation matrix (using the toRotationMatrix method). Feel free
to look at the code to understand how it works if you’re interested. All you need to know about
Quaternions is that they are 4-vectors, and that unit-length quaternions, called unit quaternions, can
represent 3D rotations and also interpolate them well. If you want to learn more, take CS 5625 next
semester!

4.6.2 Linear Interpolation

Typically, we visualize quaternions as vectors that represent rotation. Yes, they have 4 numbers, but
as most things with higher dimensionality, imagine them to be in a lower dimensional space, say
2D, and say “four” to yourself.

Given two quaternions q1 and q2, and a t to interpolate such that 0 < t < 1, a linear interpolation,
or lerp, q is given by:

q = (1− t)q1 + tq2

This will work, if we normalize the interpolated quaternion so that it’s a unit quaternion again, but
unfortunately the rotation does not happen at constant speed—it will go faster towards t=0.5 and
slower towards the ends.

4.6.3 Spherical Linear Interpolation

Intuitively, spherical linear interpolation, or slerp, gets around this problem by interpolating these
quaternions (read: vectors) along the sphere they are both a part of.

We’ll avoid the details of the derivation of the slerp formula, which are in the lecture slides. Let’s
just review how slerp is calculated. Given quaternions q1 and q2 at the surrounding key frames and
a interpolation ratio t such that 0 < t < 1, we first calculate the angle between q1 and q2, called Ω,
as follows:

cos Ω = q1 · q2

Then the interpolated quaternion q is given by

q =
sin(1− t)Ω

sin Ω
q1 +

sin tΩ

sin Ω
q2

5 Extra Credit

Currently, we only use the 2 immediate surrounding key frames of the current frame to generate it.
What if we wanted to smooth things out, by interpolating over a larger window. For extra credit,
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Figure 3: A graphical explanation of spherical linear interpolation

you can choose to implement the Catmull-Rom Spline Interpolation.

5.1 Catmull-Rom Spline Interpolation

The Catmull-Rom spline is a cubic interpolating spline that passes through all its control points. For
the interval of the curve specified by control points Pi−2, Pi−1, Pi, Pi+1, the spline has the formula

P (t) =
1

2

[
1 t t2 t3

] 
0 2 0 0
−1 0 1 0
2 −5 4 −1
−1 3 −3 1



Pi−2

Pi−1

Pi

Pi+1


Note that each patch interpolates its middle two control points. That is,

P (0) = Pi−1, P (1) = Pi.

Additionally, the tangents at these points are determined by the remaining two control points as
follows:

vi−1 =
1

2
(Pi − Pi−2) vi =

1

2
(Pi+1 − Pi−1).

5.2 Finding Control Points

To interpolate the state at some frame f using Catmull-Rom spline interpolation, we need to find
four frames to define our control points. Call these frames f0, f1, f2, and f3. The frames are chosen
as follows:

• f1 is the closest keyframe before frame f .

• f0 is the closest keyframe before frame f1.

• f2 is the closest keyframe after frame f .

• f3 is the closest keyframe after frame f2.
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That is, we find the four subsequent keyframes in our animation that satisfy f0 < f1 < f < f2 < f3.
The time t for the interpolation is determined by how far along frame f lies between f1 and f2.

We must also consider a few corner cases. When f is later than the final keyframe of the animation,
we can simply copy the state of the final keyframe. Otherwise, if fewer than four control points can
be found, you can duplicate keyframes where necessary (e.g., set f0 = f1 or f3 = f2 if there is only
one keyframe before or after f ). Done correctly, your spline should successfully pass through every
keyframe in the animation.

5.3 Interpolating Rotations

While using a spline to interpolate scales and translations is (relatively) straightforward, it’s not
obvious how to generalize slerp to a smooth interpolation using 4 keyframes. As an additional extra
credit problem, read about and implement some form of quaternion spline that has the properties
(1) evenly spaced keyframes result in constant-speed rotation, and (2) rotations are C1 continuous
across keyframes. 1

6 Implementation Notes

As with previous assignments, places where you will add code are marked with TODO; note that
some of these are marked as optional.

7 What to Submit

Submit a zip file containing:

1. Your solutions to the written problems, in pdf form.

2. Your solution organized the same way as the code on CMS. Please include your .classpath
and .project in the submission as well as all the pre-existing files in the codebase, and not
merely your modified files.

3. A readme file containing

• You and your partner’s names and NetIDs.

• The answer for the written problem.

• Whether or not you have done the extra credit problem.

• Any problems with your solution.

• Anything else you want us to know.

1Note that this is a fairly tough extra credit problem and you can still get extra credit for spline interpolation of
translation and scale, without smoothly interpolating the rotations.
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