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Surfaces and solids

CS 4620 Lecture 17
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Modeling in 3D

• Representing subsets of 3D space
– volumes (3D subsets)
– surfaces (2D subsets)
– curves (1D subsets)
– points (0D subsets)
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Representing geometry

• In order of dimension…
• Points: trivial case
• Curves

– normally use parametric representation
– line—just a point and a vector (like ray in ray tracer)

• polylines (approximation scheme for drawing)
– more general curves: usually use splines

• p(t) is from R to R3

• p is defined by piecewise polynomial functions

3



© 2013 Steve Marschner • Cornell CS4620 Fall 2013 • Lecture 17

Representing geometry

• Surfaces
– this case starts to get interesting
– implicit and parametric representations both useful
– example: plane

• implicit: vector from point perpendicular to normal
• parametric: point plus scaled tangents

– example: sphere
• implicit: distance from center equals r
• parametric: write out in spherical coordinates

– messiness of parametric form not unusual

4



© 2013 Steve Marschner • Cornell CS4620 Fall 2013 • Lecture 17

Representing geometry

• Volumes
– boundary representations (B-reps)

• just represent the boundary surface
• convenient for many applications
• must be closed (watertight) to be meaningful

– an important constraint to maintain in many 
applications
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Representing geometry

• Volumes
– CSG (Constructive Solid Geometry)

• apply boolean operations on solids
• simple to define
• simple to compute in some cases

– [e.g. ray tracing, implicit surfaces]
• difficult to compute stably with B-reps

– [e.g. coincident surfaces]
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Specific surface representations

• Parametric spline surfaces
– extrusions
– surfaces of revolution
– generalized cylinders
– spline patches

• Pause for differential geometry review…
– plane and space curves, tangent vectors
– parametric surfaces, isolines, tangent vectors, normals
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From curves to surfaces

• So far have discussed spline curves in 2D
– it turns out that this already provides of the mathematical 

machinery for several ways of building curved surfaces

• Building surfaces from 2D curves
– extrusions and surfaces of revolution

• Building surfaces from 2D and 3D curves
– generalized swept surfaces

• Building surfaces from spline patches
– generalizing spline curves to spline patches

• Also to think about: generating triangles
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Extrusions

• Given a spline curve            , define            by

• This produces a “tube” with the given cross section
– Circle: cylinder; “L”: shelf bracket; “I”: I beam

• It is parameterized by the spline t and the interval [a, b]
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Surfaces of revolution

• Take a 2D curve and spin it 
around an axis

• Given curve c(t) in the plane, 
the surface is defined easily 
in cylindrical coordinates:

– the torus is an example
 in which the curve c 
is a circle

[H
ea

rn
 &

 B
ak

er
]

10



© 2013 Steve Marschner • Cornell CS4620 Fall 2013 • Lecture 17

Swept surfaces

• Surface defined by a cross section moving along a spine
• Simple version: a single 3D curve for spine and a single 

2D curve for the cross section
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Generalized cylinders

• General swept surfaces
– varying radius
– varying cross-section
– curved axis
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From curves to surface patches

• Curve was sum of weighted 1D basis functions
• Surface is sum of weighted 2D basis functions

– construct them as separable products of 1D fns.
– choice of different splines

• spline type
• order
• closed/open (B-spline)
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Separable product construction
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Separable product construction
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Bilinear patch

• Simplest case: 4 points, cross product of two linear 
segments
– basis function is a 3D tent
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Bicubic Bézier patch

• Cross product of two cubic Bézier segments

– properties that carry over
• interpolation at corners, edges
• tangency at corners, edges
• convex hull
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Biquadratic Bézier patch

• Cross product of quadratic Bézier curves
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3x5 Bézier patch

• Cross product of quadratic and quartic Béziers
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Cylindrical B-spline surfaces

• Cross product of closed and open cubic B-splines
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Cylindrical B-spline surfaces
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Topological inflexibility of splines

• Spline patches are generally rectangular
– can wrap them around to make tube-like or torus-like 

topologies

• Continuity can be readily enforced at edges between 
patches and at corners where 4 patches join
– doesn’t escape from the topological limitation

• Tiling other kinds of surfaces must lead to places where 
the “wrong” number of patches come together
– enforcing continuity in these cases is complicated, and is the 

source of many headaches
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Approximating spline surfaces

• Similarly to curves, approximate with simple primitives
– in surface case, triangles or quads
– quads widely used because they fit in parameter space

• generally eventually rendered as pairs of triangles

• adaptive subdivision
– basic approach: recursively test flatness

• if the patch is not flat enough, subdivide into four using 
curve subdivision twice, and recursively process each piece

– as with curves, convex hull property is useful for termination 
testing (and is inherited from the curves)
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Approximating spline surfaces

• With adaptive subdivision, must take care with cracks
– (at the boundaries between degrees of subdivision)
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Specific surface reps.

• Algebraic implicit surfaces
– defined as zero sets of fairly

arbitrary functions
– good news: CSG is easy 

using min/max
– bad news: rendering is tough

• ray tracing: intersect 
arbitrary zero sets w/ray

• pipeline: need to 
convert to triangles

– e.g. “blobby” modeling
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Specific surface representations

• Isosurface of volume data
– implicit representation
– function defined by

regular samples on a
3D grid

• (like an image but
in 3D)

– example uses:
• medical imaging
• numerical simulation
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Specific surface representations

• Triangle or polygon meshes
– parametric (per face)
– very widely used

• final representation for pipeline rendering
• these days restricting to triangles is common

– rather unstructured
• need to be careful to enforce necessary constraints
• to bound a volume need a watertight manifold mesh
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Specific surface representations

• Subdivision surfaces
– based on polygon meshes

(quads or triangles)
– rules for subdividing

surface by adding new
vertices

– converges to continuous
limit surface

– next lecture
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