CS4620 Fall 2011 HW1 - Transforms and Ray Tracing

Due: Sep 16 2011

1 Change of Basis

Write down the 4-by-4 rotation matrix $\mathbf{M} \in R^{4\times4}$, that takes the orthonormal 3D vectors $\mathbf{u} = (x_u, y_u, z_u, 0)$, $\mathbf{v} = (x_v, y_v, z_v, 0)$ and $\mathbf{w} = (x_w, y_w, z_w, 0)$, to orthonormal 3D vectors $\mathbf{a} = (x_a, y_a, z_a, 0)$, $\mathbf{b} = (x_b, y_b, z_b, 0)$ and $\mathbf{c} = (x_c, y_c, z_c, 0)$, such that, $\mathbf{M}\mathbf{u} = \mathbf{a}$, $\mathbf{M}\mathbf{v} = \mathbf{b}$, and $\mathbf{M}\mathbf{w} = \mathbf{c}$.

2 Ray Tracing

Find the point of intersection and the normal (at the point of intersection) for the following objects, given a ray $\mathbf{r} = \mathbf{p} + t\mathbf{d}$:

- (a) A canonical cylinder of height H, radius R, and whose central axis is along the z axis.
- **(b)** A canonical cone of height H, base radius R, and whose central axis is along the z axis.

3 Normal Transformations

3.1 Basic transformations

Consider a transformation $\mathbf{M} = \begin{bmatrix} \mathbf{L} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}$ on points in 2D ($\mathbf{L} \in R^{2 \times 2}$, $\mathbf{t} \in R^2$), with the corresponding transformation of normals \mathbf{L}^{-1T} . For which of the following transformations (in 2D) represented by $\mathbf{M} \in \mathbf{R}^{3 \times 3}$, does the linear part satisfy $\mathbf{L} = \mathbf{L}^{-1T}$.

- (a) Translation
- (b) Rotation

- **(c)** Reflection about x-axis
- (d) Uniform scale
- (e) Non-uniform scale
- (f) Shear

3.2 Computing the transformed normal

Given a triangle ABC in 3D with vertices A = (1, 2, 0), B = (6, 4, 0), C = (3, 6, 0), and the following sequence of transformations:

- 1. The triangle is rotated by an angle $\alpha=45^\circ$ about the *y*-axis, with the center of rotation being the triangle's center of mass.
- 2. The triangle is translated by the vector $\mathbf{t} = (10, 11, 4)$.

Assume that the normal of the original triangle is defined as the one that points to the positive z direction. Find the 3D unit vector, that corresponds to the normal of the transformed triangle.

4 Aligning Line Segments

Consider two line segments in 2D (homogeneous coordinates):

```
l_1 with end points \mathbf{p}_1 = (2, 1, 1), \mathbf{p}_2 = (5, 3, 1), and l_2 with end points \mathbf{q}_1 = (1, 3, 1), \mathbf{q}_2 = (0, 4, 1).
```

Find the 3-by-3 transformation matrix \mathbf{M} , that aligns l_1 with l_2 . In other words, you have to find the transformation \mathbf{M} (rotation + scale + translation), such that $\mathbf{M}\mathbf{p}_1 = \mathbf{q}_1$ and $\mathbf{M}\mathbf{p}_2 = \mathbf{q}_2$.