CS 4620 PA2: Pipeline

out: 30 September 2011
due: 7 October 2011

1 Introduction

In this assignment, you will implement several types of shading in a simple software graphics
pipeline. In terms of the graphics pipeline stages we discussed in lecture, we are giving you the
application with the rasterization stage implemented, and your job is to implement the vertex and
fragment processing stages to achieve several different kinds of shading. This is very much like the
task you are faced with when using a modern programmable graphics processor such as the ones
that power current high-end graphics boards.

2 Principle of operation

As discussed in lecture, the graphics pipeline is a sequence of processing stages that efficiently
transforms a set of 3D primitives into a shaded rendering from a particular camera. The major
stages of the pipeline are:

e Application: holds the scene being rendered in some appropriate data structure, and sends a
series of primitives (only triangles, in our case) to the pipeline for rendering.

e Vertex Processing: transforms the primitives into screen space, optionally doing other pro-
cessing, such as lighting, along the way.

e Rasterization: takes the screen-space triangles resulting from vertex processing and generates
a fragment for every pixel that’s covered by each triangle. Also interpolates parameter values,
such as colors and normals, given by the vertex processing stage to create smoothly varying
parameter values for the fragments. Depending on the design of the rasterizer, it may clip the
primitives to the view volume. Our simple rasterizer cannot handle triangles that cross the
view plane, so we have provided a clipper to cut triangles at the near plane.

e Fragment processing: processes the fragments to determine the final color for each, to perform
z-buffering for hidden surface removal, and to write the results to the framebuffer.

e Display: displays the contents of the framebuffer where the user can see them.

We have provided the full rasterization process, and the pixel-increments work as follows. We
calculate the V and V, for each value, V, to be interpolated from the vertices to

Lincrement Yincrement

CS 4620—Pipeline 2

the fragments. The problem can be stated as: given the position and values at each vertex, find
the amount to increment the value in both the x and y directions which will satisfy the following
equations:

Py = (20,%0)
Py = (21,11)
Py = (22,92)

‘/;)1 - ‘/;70 = innc’rement (xl - mo) + Vyinc'rement (yl - yO)
‘/;72 - ‘/;70 = innc’remcnt (x2 - mo) + Vyinc'rement (y2 - yO)
The following diagram should help you visualize. And the implementation of this process is avail-

G(ﬂf, y) = Vminc (‘T - mo) + Vyinc (y - mo) + ‘/O

Vo = G(z0,y0)

Vi = G(r1,91)

Vo= G(I% y2)

Figure 1: Rasterization Increments

able at calculateInc () inthe TriangleProperties class.

For each of rendering methods detailed below, you will implement a vertex processor and a fragment
processor as subclasses of the VertexProcessor and FragmentProcessor base classes.
The vertex processor’s input is a vertex’s position, color, and normal. It returns a processed Vertex
to the pipeline. Each Vertex will contain a screen space vertex position and an attribute array
containing its parameters. They are given to the rasterizer which produces fragments whose data is
interpolated from the vertex attributes. The fragment processor takes as input a Fragment which
contains an integer (x,y) pixel coordinate and an attribute array, and after doing the appropriate
computations, it sets pixels in the FrameBuf fer as appropriate.

The attribute values specified between the Vertex and Fragment object are the means of communi-
cation between the vertex and fragment processors. Since not every vertex processor will give all
the output attributes, and not every fragment processor will consume all the input attributes, not all
vertex shaders will be compatible with all fragment shaders. Thus, we have included a compatibility
index to specify whether a vertex processor and fragment processor will be compatible with each
other. It is up to the user (you) to decide how to use all the attributes passed between the vertex and
fragment processors. But here is a list of all the attributes along with guidelines about how to use
them:

e Vertex : the 4D homogenous coordinate location (after applying perspective transformations)
of the vertex. This value will not be interpolated for the fragment processor to consume, but
will instead be used to rasterize the triangle.

CS 4620—Pipeline 3

e Normal : the normal at each vertex of the triangle which will be interpolated along the frag-
ments of the triangle.

e Color : the color at each vertex of the triangle which will be interpolated along the frag-
ments of the triangle. (Can be used to transport color sent to the vertex shader, or lighting
calculations calculated on a per-vertex basis)

e Eye space position : the eye space position of each vertex of the triangle which will be
interpolated along the fragments of the triangle. (Can be used to transport fragment eye-space
coordinates to do per-pixel lighting)

The pipeline contains three transformation matrices: the Modelview matrix, which is the product of
the modelling and viewing matrices we discussed in lecture, the Projection matrix, and the Viewport
matrix. You’ll use the Modelview matrix to transform the input triangle data in object space to
eye-space coordinates. An important feature of the pipeline is that it only allows rotations and
translations in the Modelview matrix. This means that you can transform normals using the same
matrix you use to transform vectors, a nice convenience.

Our software graphics pipeline cannot match the performance of dedicated hardware; though for
small scenes, like those in this assignment, it can achieve interactive performance. However, the
time to render a frame is largely pixel bound meaning most of the time is spent in fragment pro-
cessing. You should take care to implement your fragment programs as efficiently as possible.
Make every statement count! In particular, your performance will be seriously compromised if you
allocate objects in the fragment program or to use many calls to the Math library.

3 Requirement overview

You will implement vertex and fragment programs to provide the following kinds of shading with
hidden surface removal and support for multiple light sources:

1. Smooth Shading: each triangle is rendered with colors interpolated from the vertices. The
color at each vertex is computed using the Blinn-Phong lighting model using the color and
normal of that vertex.

2. Fragment Shading: each triangle is rendered using the Blinn-Phong lighting model, but the
shading calculation is now done for each fragment with interpolated normals, colors, and
eye-space positions from the vertices.

For this assignment, the Blinn-Phong lighting model is as described in the textbook (except assume
that the light’s specular component is full white). The diffuse color comes from the vertex colors.
The specular color and exponent, and information about light sources (which are diffuse-colored
point lights with positions in eye-space), are stored in the Pipeline class. You should implement
local lighting: the direction to the viewer and to light sources vary across each triangle. You must
also include the ambient term (which is also found in Pipeline) in all your shading.

CS 4620—Pipeline 4

4 Framework code

The framework is a simple graphics pipeline that is modelled on the way hardware graphics pipelines
work. For this assignment, you should not need to modify any code outside of the vertex and frag-
ment programs you will write. However, you will read or write data from several of the other
classes.

1. Pipeline coordinates the operation of the pipeline and provides the interface to the Scene
classes that draw the test scenes. It contains references to all the pipeline stages: the tri-
angle processor, the rasterizer, the fragment processor, and the framebuffer. It is here that
you will find the current transformations and the lighting parameters for the Phong model.
Like OpenGL, primitives are rendered by using Pipeline.begin to indicate what type of
primitive will be given, followed by a sequence of calls to Pipeline.vertex to give the
vertices, then a call to Pipeline.end. All primitives are converted into triangles.

2. VertexProcessor holds the code to perform vertex processing. Your vertex processors
will be derived from this class. Your will have to write implementations of the vertex ()
method in each sub-class. This method is called when rendering each vertex and it takes
the vertex position, the vertex color, and the vertex normal as arguments. Not every vertex
processor will use all the arguments.

There are also two extra methods in a VertexProcessor: updateLightModel and
updateTransforms. The first is called by the framework whenever the lighting param-
eters (light position, intensity, etc) change. The second is called whenever the modelview,
projection, or viewport matrices change. These calls allow you to store the current transfor-
mation matrices or do some additional pre-computations in your sub-classes to be used in
later computations.

3. Clipper contains the algorithms for clipping before rasterization. The c11ip method is the
entry point, called by the pipeline for each triangle. It clips the triangle against the near plane,
which results in zero, one, or two triangles that need to be rasterized.

4. Rasterizer contains the algorithm for rasterization. The rasterize method is the entry
point called by the pipeline for each clipped triangle. The rasterizer outputs a list of fragments
that are sent to the fragment processor. You will not need to edit this class.

5. TriangleProperties contains the logic for cull testing the triangle and calculating
the increments. The initializeAndCullTest method is called when the post-Vertex-
processed triangle is sent to the rasterizer once. This method returns true if the triangle is to
be rejected and false for acceptance. The calculateInc method is called for each value
that is to be interpolated across the vertices. This method outputs the [V, .V, lin
the output parameter.

6. FragmentProcessor holds the code for fragment processing. You will implement sub-
classes of this class to perform fragment processing. The main function is fragment and is
called for every fragment (and therefore needs to be efficient). The arguments to fragment
are a Fragment and the Framebuffer. The fragment structure stores coordinates of
the pixel it addresses and the attribute values interpolated from the triangle vertices by the
rasterizer. When the fragment program is done processing the fragment, the resultant color
(if visible) should be set in the FrameBuffer.

CS 4620—Pipeline 5

7. FrameBuf fer stores the final image. It stores the color channels as a byte array (three bytes
per pixel) and the z buffer as a float array (one float per pixel). The fragment processor can
read the z buffer using the getZ () method, and it can write to all the channels using the
set () method. The image is drawn in PipeView.display () method.

8. javax.vecmath. = is Sun’s Java vector math library. You can find the API for vecmath at

http://java.sun.com/products/java-media/3D/forDevelopers/J3D_1_3_API/j3dapi/index.html

9. Matrix4f (not to be confused with javax.vecmath.Matrix4f) is a very simpli-
fied 4x4 matrix class for this assignment. You will only need to use the *xMultiply and
xCompose operations.

10. The classes Camera, Geometry, and Scene and its subclasses make up the application
code that feeds triangles into the pipeline. The different scenes are:

e “Simple Triangle”: a scene with a single triangle. The color varies across its surface
from full red to full green to full blue at each vertex.

e “Balls”: a scene consisting of two spheres (with smooth normals). You can use it to
debug your Phong shading, since the specular highlights should be easily noticeable.

e “Cube”: a scene consisting of a cube whose faces contain different colors.

e “shipl.msh” and “ship2.msh”: Two more sophisticated scenes stored in triangle meshes.
Each triangle has a constant normal direction, which makes the models look faceted.

e “shipl/ship2.msh (Smooth)”: The same meshes with per-pixel interpolated surface nor-
mals. This will make them look smoother for Phong shading.

e “bunny500.msh (Smooth)”: Another mesh that’s more organic than the ships.

To control the camera in the “Orbit Camera” mode, click and drag in the window to rotate the
model, and shift-click and drag to move the camera closer or farther away. In the “Flythrough”
mode, click and drag to rotate the camera in place, and shift-click and hold to move forward.
You can steer while moving forward by moving the mouse around.

11. MainFrame, GLView, and PipeView are concerned with the user interface. MainFrame
contains the main method of this assignment and will initialize the GUI. The program comes
up with a single window that shows you two viewports containing the same scene (see Fig-
ures 2). The left one is rendered by our software pipeline and the right one is rendered by
OpenGL using your computer’s graphics hardware. There are several drop down boxes across
the bottom. The first two let you choose the active triangle and fragment processor. The third
one lets you choose between several simple test scenes; and the last one lets you choose
between two ways to control the camera.

The OpenGL viewport configures itself based on the classes that are selected in the first two
menus. It configures OpenGL to match the behavior expected from your code (but only for
valid combinations of triangle and fragment processors) as closely as possible. Because it uses
the fixed-function shading in OpenGL, which is not capable of many of the shading methods
you’ll be implementing, it will match your code exactly (though not actually pixel-for-pixel)
only for the smooth-shaded modes.

Also included are several stub classes for the triangle and fragment shaders that you will need to
implement for this assignment. We expect that each of the shading modes described above will be
implemented by the following pairs of shading processors:

CS 4620—Pipeline 6

e Smooth shading: SmoothShadedVP and ColorzZBufferFP

e Fragment shading: Fragment ShadedVP and PhongShadedFP

To get you started, we’ve provided ConstColorVP and TrivialColorFP as very basic shaders,
so make sure you understand them. A good first step is probably to implement ColorZBufferFP
and test it using ConstColorVP with the two-spheres scene.

S Handing In

Please submit your assignment in the usual way via CMS. Include a .zip file of the entire pipeline
package tree. Include any additional data files that are needed. As always, document your code and
include a brief readme file (txt or PDF) that describes any special structure or additions/omissions
that we should be aware of.

CS 4620—Pipeline 7

Soflware

OpenGL]

class pipeline.vertex.FragmentShadedVP

-
class pipeline.fragment.Phong ShadedFP -
Balls -
Orbit Camera -

| £| Pipeline

class pipeline.vertex. Smooth ShadedVP

class pipeline.fragment.ColorZBufferFP
bunny500.msh {Smooth)

Orbit Camera

Figure 2: Screenshots of correct implementations for reference

