
Synchroniza+on	Review

CS	4410,	Opera+ng	Systems	

Fall	2016	
Cornell	University

Rachit	Agarwal	
Anne	Bracy	

See:	Ch	5&6	in	OSPP	textbook	

The	slides	are	the	product	of	many	rounds	of	teaching	CS	4410	by	Professors	Sirer,	
Bracy,	Agarwal,	George,	and	Van	Renesse.

Synchroniza+on:	Topic	1

2

Synchroniza+on	Mo+va+on	&	Basics		
• Race	Condi+ons	
• Cri+cal	Sec+ons	
• Example:	Too	Much	Milk	
• Basic	Hardware	Primi+ves		
• Building	a	SpinLock

Synchroniza+on:	Topic	2

3

Semaphores	
• Defini+on	
• Binary	Semaphores	
• Coun+ng	Semaphores	
• Implemen+ng	Semaphores	
• Classic	Synchroniza+on	Problems	(w/Semaphores)	

• 	Producer-Consumer	(w/	a	bounded	buffer)		
• 	Readers/Writers	Problems	

• Classic	Semaphore	Mistakes	
• Semaphores	Considered	Harmful

Synchroniza+on:	Topic	3

4

Monitors	&	Condi,on	Variables	
• Defini+on	
• Seman+cs	
• Simple	Monitor	Example	
• vs.	Semaphores	
• Classic	Synchroniza+on	Problems	(w/Monitors)	

• 	Bounded	Buffer	Producer-Consumer		
• 	Readers/Writers	Problems	

• Classic	Synchroniza+on	Mistakes	(w/Monitors)

What	is	a	Monitor?

5

ADT	for	shared	resources:	
1.	Shared	Private	Data	

• the	resource	
• accessed	only	here	

2.	Procedures	
• to	access	resource	
• only	act	on	data	local	to	
the	monitor	

3.	Synchroniza+on	primi+ves	
• among	threads	that	access	
the	procedures

[Hoare 1974]

Monitor	stack	
{	
		int	top;	

					
			void	push(any_t	*)	{	
			}	

			any_t	*pop()	{	
			}	

			initialization_code()	{	
			}	
}	

Monitors	can	define	Condi+on	Variables

6

A	mechanism	to	wait	for	events	
3	opera+ons	on	Condi+on	Variable		Condition	x;	
•	x.wait():	release monitor lock, relinquish processor, sleep
until woken up (or wake up on your own),	reacquire on return 	

• 	x.signal():	wake at least one process waiting on
 condition (if there is one). No history associated with signal.
• 	x.broadcast():	wake	all	processes	wai+ng	on		
							condition (useful for resource manager)

You must hold the monitor lock to call these operations.

Types	of	Wait	Queues

7

Monitors	have	two	kinds	of	“wait”	queues	
• 	Entry	to	the	monitor:	has	a	queue	of	threads	
wai+ng	to	obtain	mutual	exclusion	&	enter	

• 	Condi,on	variables:	each	condi+on	variable	has	
a	queue	of	threads	wai+ng	on	the	associated	
condi+on

Monitors	in	Python

8

class	RWlock:	
		def	__init__(self):	

		self.lock	=	Lock()	
		self.canRead	=	Condition(self.lock)	
		self.canWrite	=	Condition(self.lock)	
		self.nReaders	=	0	
		self.nWriters	=	0	
		self.nWaitingReaders	=	0	
		self.nWaitingWriters	=	0				

def	end_read(self):	
		with	self.lock:	
					self.nReaders	-=	1	
					if	self.nReaders	==	0	and	self.nWaitingWriters	>	0:	
																self.canWrite.notify()

def	begin_read(self):	
			with	self.lock:	
	 		self.nWaitingReaders	+=	1	
						while	self.nWriters	>	0	or	self.nWaitingWriters	>	0:	
									self.canRead.wait()	
						self.nWaitingReaders	-=	1	
						self.nActiveReaders	+=	1

Do	not	forget:	
• 	One	lock	for	the	monitor	
• 	CVs	ini,alized	with	the	lock	
• 	counters	ini,alized	
• 	who	waits?	who	no,fies?	
• 	post-wait	updates	
• 	no,fy	vs.	no,fyAll

Barbershop	Problem

9

One	possible	version:	
• A	barbershop	holds	up	to	k	clients	
• N	barbers	work	on	clients	
• M	clients	total	want	their	hair	cut	
• Each	client	will	have	their	hair	cut	by	the	first	
barber	available	

Barbershop	Problem

10

Another	possible	version:	
•Barbershop	has	an	exit	door	

• customer	cannot	leave	un+l	door	is	open	
• barber	cannot	take	on	a	new	client	un+l	
customer	has	lee	&	closed	the	door	

•Customer	takes	a	seat	only	when	a	barber	ready	
•Barber	cut	hair	only	when	customer	is	seated

More	Specs

11

Need	to	implement	three	monitor	func+ons:	
getHaircut:		

• 	called	by	client	
• 	returns	when	haircut	is	done	

getClient:		
• 	called	by	barber	to	serve	a	customer	

letClientLeave:		
• 	called	by	barber	to	let	a	customer	out	of	the	
barbershop

ImplemenRng	the	Barbershop

12

(1)	Iden+fy	the	waits	
Customer	wait:	
•	un+l	barber	is	available	
•	un+l	barber	opens	exit	door		

Barber	waits:	
•	un+l	customer	sits	in	a	chair		
•	un+l	customer	leaves	

(2)	Create	condi+on	variables	for	each	
(3)	Create	counters	to	trigger	the	wai+ng	
(4)	Create	signals	for	the	waits

ImplemenRng	the	Barbershop

13

(1)	Iden+fy	the	waits	
(2)	Create	condi+on	variables	for	each	

•	waitForBarber		
•	waitForDoor	
•	waitForClient	
•	waitForClientToLeave	

(3)	Create	counters	to	trigger	the	wai+ng	
(4)	Create	signals	for	the	waits

ImplemenRng	the	Barbershop

14

(1)	Iden+fy	the	waits	
(2)	Create	condi+on	variables	for	each	
(3)	Create	counters	to	trigger	the	wai+ng	
•	nSeatedCustomers	
•	nBarbersAvail	
•	nDoorsOpened	

(4)	Create	signals	for	the	waits

