Synchronization Review

CS 4410, Operating Systems

Fall 2016
Cornell University

Rachit Agarwal
Anne Bracy

See: Ch 5&6 in OSPP textbook

The slides are the product of many rounds of teaching CS 4410 by Professors Sirer, @/

Bracy, Agarwal, George, and Van Renesse.



Synchronization: Topic 1

Synchronization Motivation & Basics
* Race Conditions
* Critical Sections
* Example: Too Much Milk
* Basic Hardware Primitives
* Building a SpinLock



Synchronization: Topic 2

Semaphores

* Definition

* Binary Semaphores

* Counting Semaphores

* Implementing Semaphores

* Classic Synchronization Problems (w/Semaphores)
* Producer-Consumer (w/ a bounded buffer)
 Readers/Writers Problems

* Classic Semaphore Mistakes

* Semaphores Considered Harmful



Synchronization: Topic 3

Monitors & Condition Variables

* Definition

* Semantics

* Simple Monitor Example

* vs. Semaphores

* Classic Synchronization Problems (w/Monitors)
 Bounded Buffer Producer-Consumer
* Readers/Writers Problems

* Classic Synchronization Mistakes (w/Monitors)



What is a Monitor? [Hoare 1974]

ADT for shared resources:

Monitor stack

1. Shared Private Data — {
= int top;
* the resource
void push(any_t *) {
* accessed only here )
2. Procedures any t *pop()

* {0 access resource J

* only act on data local to
the monitor '

initialization code() {

}

3. Synchronization primitives
 among threads that access
the procedures



Monitors can define Condition Variables

A mechanism to wait for events

3 operations on Condition Variable Condition x;

e x.wait(): release monitor lock, relinquish processor, sleep
until woken up (or wake up on your own), reacquire on return
* x.signal(): wake at least one process waiting on

condition (if there is one). No history associated with signal.
* X.broadcast(): wake all processes waiting on

condition (useful for resource manager)

You must hold the monitor lock to call these operations.



Types of Wait Queues

Monitors have two kinds of “wait” queues

* Entry to the monitor: has a queue of threads
waiting to obtain mutual exclusion & enter

* Condition variables: each condition variable has
a queue of threads waiting on the associated
condition



Monitors in Python

class RWlock:

def init (self): DO nOtforQEt

self.lock = Lock() .
self.canRead = Condition(self.lock) One lock for the monitor

self.canWrite = Condition(self.lock) *® CVs initialized with the lock
self.nReaders = @ * counters initialized
self.nWriters = 0
self.nWaitingReaders = who waits? who notifies?
self.nWaitingWriters .
e post-wait updates
def begin read(self): * notify VS. notifyAII
with self.lock:
self.nWaitingReaders += 1
while self.nWriters > @ or self.nWaitingWriters > 0O:
self.canRead.wait()

self.nWaitingReaders -=1
self.nActiveReaders += 1

i
O
o

def end read(self):
with self.lock:
self.nReaders -=1
if self.nReaders == 0 and self.nWaitingWriters > 0:
self.canWrite.notify()



Barbershop Problem

One possible version:
* A barbershop holds up to k clients
* N barbers work on clients
M clients total want their hair cut
e Each client will have their hair cut by the first
barber available



Barbershop Problem

Another possible version:
* Barbershop has an exit door
e customer cannot leave until door is open
* barber cannot take on a new client until
customer has left & closed the door
e Customer takes a seat only when a barber ready
e Barber cut hair only when customer is seated

10



More Specs

Need to implement three monitor functions:
getHaircut:

* called by client

e returns when haircut is done
getClient:

 called by barber to serve a customer
letClientLeave:

 called by barber to let a customer out of the

barbershop

11



Implementing the Barbershop

(1) Identify the waits
Customer wait:
e until barber is available
e until barber opens exit door
Barber waits:
e until customer sits in a chair
e until customer leaves
(2) Create condition variables for each
(3) Create counters to trigger the waiting
(4) Create signals for the waits

12



Implementing the Barbershop

(1) Identify the waits

(2) Create condition variables for each
e waitForBarber

e WaitForDoor
e WaitForClient
e wWaitForClientToLeave

(3) Create counters to trigger the waiting
(4) Create signals for the waits

13



Implementing the Barbershop

(1) Identify the waits
(2) Create condition variables for each
(3) Create counters to trigger the waiting
e nSeatedCustomers
e nBarbersAvail
* nDoorsOpened
(4) Create signals for the waits

14



