
Project 3

Project 3
Unreliable Datagrams

Mayur Patel

Slide heritage: Previous TAs

Cornell CS 4411, October 7, 2016

Project 3

1 Project Scope

2 Implementation details
Using the networking pseudo-device
Interrupts
Miniports

An Example

3 Concluding Thoughts (Grading)

Project 3

Project Scope

Basics

How to make computers to communicate?
Protocol: Set of formats and rules to exchange data.
Different layers of abstraction for different
functionality.
UDP: A transport layer protocol.

Project 3

Project Scope

What do unreliable datagrams involve?

Build a UDP/IP-like networking stack.
Use the pseudo-network interface network.h for
“IP”.
Use ports to identify endpoints.
A minimessage layer for thread I/O.

Project 3

Project Scope

The Interface

void minimsg_initialize();
miniport_t* miniport_create_unbound(

int port_number);
miniport_t* miniport_create_bound(

network_address_t addr,
int remote_unbound_port_number);

void miniport_destroy(miniport_t* miniport);
int minimsg_send(miniport_t* local_unbound_port,

miniport_t* local_bound_port,
minimsg_t* msg, int len);

int minimsg_receive(miniport_t* local_unbound_port,
miniport_t** new_local_bound_port,
minimsg_t* msg, int *len);

Project 3

Implementation details

Using the networking pseudo-device

Overview

The networking device should be treated as the IP layer of
your system.

It transparently enables communication between other
systems running minithreads.

network5.c

network6.c

Project 3

Implementation details

Interrupts

Networking is interrupt-driven

network_initialize() installs the handler.
Should be initialized after clock_initialize and
before interrupts.
The prototype/behavior is similar to the clock
interrupt.
Each received packet triggers an interrupt.
Interrupts are delivered on the current thread’s stack.
This should finish as soon as possible!

Project 3

Implementation details

Interrupts

Header generation

Datagram = Header + Payload
Use the interface in miniheader.h to pack/unpack.
Set the protocol field of the header to
PROTOCOL_MINIDATAGRAM.
Use pack_address(...) to pack source &
destination addresses.
Use pack_unsigned_short(...) to pack source
& destination ports.

Project 3

Implementation details

Interrupts

network_handler

typedef struct {
// sender address
network_address_t sender;
// header+payload
char buffer[MAX_NETWORK_PKT_SIZE];
// size
int size;

} network_interrupt_arg_t;

The header and the data are joined in the buffer; you
must strip it off.

Project 3

Implementation details

Interrupts

Striping the header

Copy the header from the byte buffer into a
mini_header_t*.
Check the protocol field of the header.
Unpack the source and destination addresses.
Unpack the destination port.

Project 3

Implementation details

Interrupts

Sending datagrams

Call network_send_pkt() from minimsg_send()
to send datagrams.

int network_send_pkt(
network_address_t dest_address,
int hdr_len, char* hdr,
int data_len, char* data);

Header contains information about the sender &
receiver.
Reject datagrams larger than MINIMSG_MAX_MSG_SIZE.

Project 3

Implementation details

Miniports

Overview

A miniport is a data structure that represents a one-way
communication endpoint.

Unbound ports are used for listening and can
receive from any remote port – not bound because
any (network_address, port) can send data to it.
Bound ports are used for sending data – bound
because sending data to this port results in a specific
(network_address, port) receiving data.

Project 3

Implementation details

Miniports

A sends from its port 2 to B’s port 3

Unbound (listening) Port 1 and 3
Bound (used for sending) Port 2
Threads: A, B

Sender Receiver

A B

2

1

3

Project 3

Implementation details

Miniports

Minimsg layer creates bound port 100 and delivers the
message

A’s message is delivered to B’s unbound (listening)
port 3.
B is unblocked.
The bound (used for sending) port 100 is created in
order to allow B to respond.

Sender Receiver

A B

2

1

3

100

Project 3

Implementation details

Miniports

B responds to A over the new bound port.

B receives a reference to its bound (used for sending)
port 100.
B can send to 100.
The message will be sent to A’s unbound (used for
listening) port 1.

Sender Receiver

A B

2

1

3

100

Project 3

Implementation details

Miniports

What does the datastructure look like?

Conceptually it looks like this∗:

struct miniport {
char port_type;
int port_number;

queue_t *incoming_data;
semaphore_t* datagrams_ready;

network_address_t remote_addr;
int remote_unbound_port;

}

∗the next slide should be referenced when implementing

Project 3

Implementation details

Miniports

You should use unions

Unions store two overlapping datastructures†.

union {
struct {

queue_t *incoming_data;
semaphore_t* datagrams_ready;

} unbound;
struct {

network_address_t remote_addr;
int remote_unbound_port;

} bound;
};

†You should use this to replace the last 4 variables from the struct on the
previous page

Project 3

Implementation details

Miniports

Implementation specs

miniport_send sends data to the “remote port”.
Your computer can also talk to itself – remote port
may refer to a local port!
A miniport is identified by a 16-bit unsigned number
(the actual datatype is bigger).
Unbound miniports are in [0-32767] – can be chosen
by the user.
Bound miniports are in [32768-65535] – assign
successive numbers automatically.

Project 3

Implementation details

Miniports

Minimsg Layer

The sender assembles a header that identifies the
end points of communication.
The receiver strips the header to identify the
destination, enqueues the packet, and wakes up any
sleeping threads.

Project 3

Implementation details

Miniports

Minimsg Functions

minimsg_send is non-blocking – i.e. doesn’t wait for
the send to succeed.
Sends data using network_send_pkt().

minimsg_receive blocks until a message is
received.
Provides a bound port so a reply may be sent.

Project 3

Concluding Thoughts (Grading)

Grading

Port operations must be O(1).
Do not waste resources.
Make sure to not reassign ports that are in-use.
The application destroys remote miniports.
We will be grading you on your implementation and
test cases.

	Project Scope
	Implementation details
	Using the networking pseudo-device
	Interrupts
	Miniports

	Concluding Thoughts (Grading)

