
File	Systems

CS	4410,	Opera4ng	Systems	

Fall	2016	
Cornell	University

Rachit	Agarwal	
Anne	Bracy	

See:	Ch	13	in	OSPP	textbook	

The	slides	are	the	product	of	many	rounds	of	teaching	CS	4410	by	Professors	Sirer,	
Bracy,	Agarwal,	George,	and	Van	Renesse.

2

Long-term	InformaLon	Storage	Needs	
•	large	amounts	of	informa4on	
•	informa4on	must	survive	processes	
•	need	concurrent	access	to	mul4ple	processes	

SoluLon	
•	Store	informa4on	on	disks	in	units	called	files	
•	persistent,	only	owner	can	delete	
•	managed	by	the	OS	

File	Systems:	How	the	OS	manages	files!

File	Systems	101

Challenges	for	File	System	Designers

3

• 	Performance:	despite	limita4ons	of	disks	
‣	leverage	spa4al	locality	

• 	Flexibility:	need	jacks-of-all-trades,	not	just	FS	for	X	

• 	Persistence:	maintain/update	user	data	+	internal	
data	structures	on	persistent	storage	devices	

•Reliability:	must	store	data	for	long	periods	of	4me,	
despite	crashes	or	malfunc4ons

First	things	first:	Name	the	File!

4

1.	Files	are	abstracted	unit	of	informa4on		
2.	Don’t	care	exactly	where	on	disk	the	file	is	

➜	Files	have	human	readable	names	
•	file	given	name	upon	crea4on	
•	use	the	name	to	access	the	file	

Name	+	Extension

5

Naming	Conven:ons		
• 	OS	dependent	
			Windows	not	case	sensi4ve,	UNIX	is		
• 	Usually	ok	up	to	255	characters	

File	Extensions	
•	Also	OS	dependent		
		Windows:	aZaches	meaning	to	extensions	

associates	applica4ons	to	extensions	
UNIX:	extensions	not	enforced	by	OS	

- 	Some	applica4ons	might	insist	upon	them	
(e.g.,	.c,	.h,	.o,	.s,	etc.	for	C	compiler)

Directory

6

Maps	human	readable	name	to	file	number	

directory index	
structure

Storage	
Block

File		
Number	
871

File		
Name	

“foo.txt”
music 320
work 219
foo.txt 871

Path	Names

7

•	Absolute:	path	of	file	from	the	root	directory	
							e.g.,	/home/pat/projects/test.c	
•	Rela4ve:	path	from	the	current	working	directory	
(current	work	dir	stored	in	process’	PCB)	
2	special	entries	in	each	UNIX	directory:	

“.”	current	dir	
“..”	for	parent	

To	access	a	file:	
• 	Go	to	the	folder	where	file	resides	—OR—		
• 	Specify	the	path	where	the	file	is

Paths	in	acLon!

8

music 320
work 219
foo.txt 871

File 830
 ˝/home/tom˝

mike 682
ada 818
tom 830

File 158
 ˝/home˝

File 871
 ˝/home/tom/foo.txt˝

bin 737
usr 924
home 158

File 2
 ˝/˝

The quick
brown fox
jumped
over the
lazy dog.

Example:	
/home/tom/foo.txt	

all	files

ImplemenLng	Directories

9

When	a	file	is	opened,	OS	uses	path	name	to	find	dir	
•	Directory	has	informa4on	about	the	file’s	disk	blocks	
•	Directory	also	has	aZributes	of	each	file	
Directory:	map	ASCII	file	name	to	file	aZributes	&	loca4on	
2	op4ons:	entries	have	all	aZributes,	or	point	to	file	I-node

File	System	Layout

10

File	System	is	stored	on	disks	
• disk	is	divided	into	1	or	more	parLLons	
• 	Sector	0	of	disk	called	Master	Boot	Record	
• 	end	of	MBR:	par44on	table	(par44ons’	start	&	end	addrs)	

First	block	of	each	par44on	has	boot	block	
• 	loaded	by	MBR	and	executed	on	boot

enLre	disk
PARTITION #4PARTITION #2PARTITION #1 PARTITION #3

PARTITION
TABLE

MBR

Root DirFree Space MgmtBOOT BLOCK I-NodesSUPERBLOCK Files & Directories

Storing	Files

11

Files	can	be	allocated	in	different	ways:	
•	Con4guous	alloca4on	

All	bytes	together,	in	order	
•	Linked	Structure	

Each	block	points	to	the	next	block	
•	Indexed	Structure	

Index	block	points	to	many	other	blocks	

Which	is	best?	
For	sequen4al	access?	Random	access?	
Large	files?	Small	files?	Mixed?

ConLguous	AllocaLon

12

All	bytes	together,	in	order	
+	Simple:		

state	required	per	file:	start	block	&	size	
+	Performance:		

en4re	file	can	be	read	with	one	seek	
–	Fragmenta4on	

external	is	bigger	problem	
–	Usability:		

user	needs	to	know	size	of	file	

Used	in	CD-ROMs,	DVDs	

file1 file2 file3 file4 file5

13

MicrosoY	File	AllocaLon	Table	
•originally:	MS-DOS,	early	version	of	Windows		
• today:	s4ll	widely	used	(e.g.,	CD-ROMs,	thumb	
drives,	camera	cards)	

File	table:	
• 	Linear	map	of	all	blocks	on	disk	
• 	Each	file	a	linked	list	of	blocks

Case	Study	#1:	File	Alloca6on	Table	(FAT)

[late	70’s]

data

next

data

next

data

next

decoupl
ed	

physical
ly

32	bit	entries

FAT BLOCKS

FAT	File	System

14

Data BlocksFAT

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

File 9 Block 3

File 9

File 12

File 12 Block 1
File 9 Block 4

File 9 Block 0
File 9 Block 1
File 9 Block 2
File 12 Block 0

•	1	entry	per	block	
•	EOF	for	last	block	
•	0	indicates	free	block	
•	usually	uses	a	simple	
alloca4on	strategy	(e.g.	
next-fit)	
•	directory	entry	maps	
name	to	FAT	index

Directory
bart 9

maggie 12

0

0

0

EOF
EOF

}

FAT	Directory	Structure

15

Folder:	a	file	with	32-byte	entries	
Each	Entry:	
• 	8	byte	name	+	3	byte	extension	(ASCII)	
• 	crea4on	date	and	4me	
• 	last	modifica4on	date	and	4me	
• 	first	block	in	the	file	(index	into	FAT)	
• 	size	of	the	file	
• 	Long	and	Unicode	file	names	take	up	mul4ple	
entries

music 320
work 219
foo.txt 871

How	Good	is	FAT?

16

+	Simple	
• state	required	per	file:	
start	block	only	

+	Widely	supported	
+	No	external			
						fragmenta4on	
+	all	of	block	used	for	data	

-	Poor	locality	
-	Many	file	seeks	unless				
			en4re	FAT	in	memory		
-	Poor	random	access	
-	Limited	metadata			
-	Limited	access	control	
-	No	support	for	hard	links	
-	Limita4ons	on	volume		
			and	file	size	
-	No	support	for	reliability	
			techniques

17

UNIX	Fast	File	System	

•		inode	table	
- Analogous	to	FAT	table	

• 	inode	
- Metadata	
- 12	data	pointers	
- 3	indirect	pointers

Case	Study	#2:	Fast	File	System	(FSS)	
[early	80’s]Inode Array

File Metadata

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indirect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

DP
Direct Pointer

DP
DP
DP
DP
DP
DP
DP
DP
DP

Direct Pointer

FFS	Superblock

18

Iden4fies	file	system’s	key	parameters:	
•	type	
•	block	size	
•	inode	array	loca4on	and	size	
			(or	analogous	structure	for	other	FSs)	

block	number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

blocks:

Remaining	blocksi-node	
blocks

super
block

FFS:	Index	Structures

19

Inode Array

File Metadata

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indirect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

DP
Direct Pointer

DP
DP
DP
DP
DP
DP
DP
DP
DP

Direct Pointer

• Type	
- ordinary	file	
- directory	
- symbolic	link	
- special	device	

• Size	of	the	file	(in	#bytes)	
• #links	to	the	i-node	
• Owner	(user	id	and	group	id)	
• Protec4on	bits	
• Times	
- crea4on,	last	accessed,	last	

modified

What	else	is	in	an	Inode?

20

Inode Array

File Metadata

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indirect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

DP
Direct Pointer

DP
DP
DP
DP
DP
DP
DP
DP
DP

Direct Pointer

File
Metadata

AKA file control block (FCB)

FFS:	Index	Structures

21

Inode Array

File Metadata

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indirect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

DP
Direct Pointer

DP
DP
DP
DP
DP
DP
DP
DP
DP

Direct Pointer

12

Assume	blocks	are	4K	&	
block	references	4	bytes

12x4K=48K	directly	
reachable	from	the	inode

2(nx10)x4K	=		
with	n	levels	of	indirecLon

1K

1K

1K

1K 1K

1K

1K

1K

1K

1K n=1:		4MB

n=2:	4GB

n=3:	4TB

4	CharacterisLcs	of	FFS

22

1.	Tree	Structure	
•	efficiently	find	any	block	of	a	file	

2.	High	Degree	(or	fan	out)	
•	minimizes	number	of	seeks	
•	supports	sequen4al	reads	&	writes	

3.	Fixed	Structure	
•	implementa4on	simplicity	

4.	Asymmetric	
•	not	all	data	blocks	are	at	the	same	level		
•	supports	large	
•	small	files	don’t	pay	large	overheads

Small	Files	in	FFS

23

Inode Array

File Metadata

NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL

Inode
Data

Blocks

DP
DP

Direct Pointer

Direct Pointer

What	if	fixed	3	levels	instead?		
•	4	KB	file	consumes	~16	KB	(4	KB	data	+	
3	levels	of	4KB	indirect	blocks	+	inode)	

•	reading	file	would	require	reading	5	
blocks	to	traverse	tree

all	blocks	
reached	via	

direct	pointers

Sparse	Files	in	FFS	

24

File Metadata

Dbl. Indirect Ptr.

Inode

Data
Blocks

Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

NIL
NIL
NIL
NIL
NIL

Direct Pointer
NIL
NIL
NIL

NIL
NIL
NIL
NIL

NIL

File	size	(ls	-lgGh):	1.1	GB	
Space	consumed	(du	-hs):		16	KB

Read	from	hole:	0-filled	buffer	created	
Write	to	hole:	storage	blocks	for	data	+	
required	indirect	blocks	allocated

2	x	4	KB	bocks:	1	@	offset	0	
					1	@	offset	230

FFS	Directory	Structure

25

Originally:	array	of	16	byte	entries	
•14	byte	file	name	
•2	byte	i-node	number	

Now:	linked	lists.		Each	entry	contains:	
•4-byte	inode	number	
• Length	of	name	
•Name	(UTF8	or	some	other	Unicode	encoding)	

First	entry	is	“.”,	points	to	self	
Second	entry	is	“..”,	points	to	parent	inode

music 320
work 219
foo.txt 871

FFS:	Steps	to	reading	/foo/bar/baz	

26

(1) inode	#2		(root	always	has	inumber	2),	find	root’s	blocknum	(912)	
(2) root	directory	(in	block	912),	find	foo’s	inumber	(31)	
(3) inode	#31,	find	foo’s	blocknum	(194)	
(4) foo	(in	block	194),	find	bar’s	inumber	(73)		
(5) inode	#73,	find	bar’s	blocknum	(991)	
(6) bar	(in	block	991),	find	baz’s	inumber	(40)	
(7) inode	#40,	find	data	blocks	(302,	913,	301)	
(8) data	blocks	(302,	913,	301)

194

…

301 302

…

912 913

…

991

baz	40	
ni		80	
nit	87

n d	 I	
remembe
r.I	 do	
and	I

bin	47	
foo	31	
usr	98

fie	23	
far	81	
bar	73

under
stand
.

I	 hear	
a n d	 I	
forget.	
I	see	a

912 194 302	
913	
301

991

2 31 40 73
inodes blocks

1 23 4

Read	&	Open:

8 8857 7

Caching	allows	
first	few	steps	to	

be	skipped

