
CS4410/11:	Opera.ng	Systems

Rachit	Agarwal	
Anne	Bracy

Storage



Operating	Systems	—	Where	are	we?	

4410 4411

Homeworks 4	+	1 -

Projects 2	+	1 3	+	1

Exams - -



Operating	Systems	—	Where	are	we?	

Max Mean Median Std.	Dev.

HW1 20 19.2 20 1.66

HW2 35 26.71 26 5.34

HW3

HW4

10-P1 80 73 80 14.46

10-P2

11-P1 100 83.2 84 8.38

11-P2 100 82.5 84 10.21

11-P3



Operating	Systems	—	Recap	

• Processes	and	Threads	
• Abstraction	of	a	computer	(CPU,	storage,	network,	…)	

• Synchronization,	Deadlock	
• Sharing	resources	“correctly”	

• CPU	Scheduling	
• Sharing	CPU	resources	“efficiently”	

• Networking	
• Sharing	network	resources	“efficiently”



Operating	Systems	—	Storage	(Next	7	lectures)

Disk

Memory

Caches

Registers

SSD

Sharing	Storage	“efficiently”	and	…

Faster	
(?)

More	
expensive

Lower	
capacity



Operating	Systems	—	Memory

Goal	of	Memory	Management	

• Sharing	of	memory	across	processes	
• Why	share	memory?	

• Why	processes?	Why	not	threads?	

• Time-sharing	
• Load	one	program	onto	machine	

• Execute	to	completion	

• Problem:	Long	I/O	leads	to	inefficiencies	

• Space-sharing	
• Simultaneously	running	multiple	processes



Mail

0x00000000

0xFFFFFFFF

Apache

Movie

Apache

Kernel	

PCBs

Memory	—	Sharing	

Challenges	of	space-sharing	

• Protection	
• Across	processes	

• Naming	and	addressing	
• Identify	physical	addresses?		

• Efficiency	
• Utilization?	Using	faster	memory?



Memory	—	Sharing	

Option	1:	Load	all	

• Load	all	processes	into	memory	

• Switch	between	them	under	OS	control	

•Must	relocate	program	when	load	it	

• Big	Problem:	Protection	

• A	bug	in	one	processes	can	kill	others	

• Guess	who	used	it?	
• MS-DOS,	MS-Windows



Memory	—	Sharing	

Option	2:	Copy	on	load	

• Copy	entire	process	memory	to	disk	during	I/O	

• Copy	back	when	it	restarts	

• No	need	to	relocate	

• Big	Problem:	Performance	

•Why?	

• Guess	who	used	it?	

• Early	versions	of	Unix



Memory	—	Sharing	

Option	3:	Access	Check	

• Give	each	program	a	piece	of	memory	

• Upon	each	memory	reference	

• check	that	it	stays	within	its	address	space	

• How	to	implement	this?	

• Address	translation	
• Base	and	bound	registers	

• Cray-1



Memory	Sharing	—	Access	Check	

Address	Translation	(more	later)	

• Program	generates	virtual	addresses	

• “Virtual	addresses”	translated	into	physical	addresses	



Memory	Sharing	—	Access	Check	

Base	and	Bound	registers	

• Base:	Physical	address	corresponding	to	virtual	address	0	

• Bound:	higher	allowable	virtual	address	



Memory	Sharing	—	Model	

Overall	model	

• Each	process	has	a	virtual	address	space	

• Internally	mapped	to	physical	address	space	

• Virtual	to	Physical	allocation?	



Memory	Sharing	—	Model	

Virtual	to	Physical	allocation	

• First-Fit	
• Allocate	first	“hole”	that	is	big	enough	

• Best-Fit	
• Allocate	smallest	“hole”	that	is	big	enough	

•Worst-Fit	

• Allocate	largest	“hole”	that	is	big	enough



Memory	Sharing	—	Model	

Mail

0x00000000

0xFFFFFFFF

Apache

Movie

Apache

Kernel	

Virtual	to	Physical	allocation:	Problem?	

• External	Fragmentation	

• Available	physical	memory,	but	fragmented	

• Various	options	
•Wait	for	space	(problem?)		

•Make	space	(how?)



Memory	Sharing	—	Model	

Virtual	to	Physical	allocation:	Solution	

• Allocations	at	“finer	granularity”	
• Pages	

• Break	physical	address	space	into	fixed	size	pages		

•Map	Virtual	address	space	to	multiple	pages	

• Non-contiguous	

• Dynamic	address	translation


