Networking - Network layer

Three concepts

- Naming
- A way to identify the source/destination
- E.g., house address
- Routing
- rinding "how to" move towards the destination
- E.g., which airplane should the stuff go on
- Forwarding
- Actually "moving" towards the destination
- E.g., Using airplane/truck/rail

Network layer - Forwarding

Attempt 1: Broadcast

- Send to everybody
- Goods
- Oh, well, simplicity
- Not-so-goods
- Oh, well, everything else
- Bandwidth overheads

Network layer - Forwarding

Attempt 2: Time division Multiplexing

- Each source-destination pair assigned a time slot
- Can send data only during that slot
- Goods
- No collisions
- Not-so-goods
- Underutilization of resources

Network layer - Forwarding

Attempt 3: Frequency division Multiplexing

- Each source-destination pair assigned a subset of resources
- Can use only "assigned" resources (e.g., bandwidth)
- Goods
- Predictable performance
- Not-so-goods
- Underutilization of resources

Network layer - Forwarding

Attempt 2 and 3: Circuit Switching

- Source establishes connection
- Resources along the path are reserved
- Source sends data
- Transmit data using the reserved resources
- Source tears down connection
- Free resources for others to use

Network layer - Forwarding

Circuit Switching

- Goods:
- Predictable performance
- Reliable delivery
- Simple forwarding mechanism
- Not-so-goods
- Resource underutilization
- Blocked connections
- Connection set up overheads
- Per-connection state in switches (scalability problem)

Network layer - Forwarding

Attempt 4: Packet Switching

- Divide the message into packets
- Put destination address in the header of each packet
- Just like shipping stuff
- Each device stores a "look-up table"
- Whats the next hop towards the destination?
- Destination receives the packet(s)
- And reconstructs the message

Network layer - Forwarding

Packet Switched forwarding

- Hop-by-hop forwarding
- Each router has a "look-up table" (forwarding information base)
- What should be stored in this table?
- Prefix-based forwarding (longest-prefix matching)
- Maps prefixes to the next-hop

Network layer - Forwarding

Packet Switching

- Goods:
- No resource underutilization
- A source can send more if others don't use resources
- No blocked connection problem
- No per-connection state
- No set-up cost
- Not-so-goods:
- Packet header overhead
- Network failures become a problem

Networking - Network layer

Three concepts

- Naming
- A way to identify the source/destination
- E.g., house address
- Routing
- Finding "how to" move towards the destination
- E.g., which airplane should the stuff go on
- Forwarding
- Actually "moving" towards the destination
- E.g., Using airplane/truck/rail

Network layer - Example

Network layer - Routing

Lets come up with a routing scheme

Network layer - Routing

Network layer - Routing

A wants to
find a path to Dest.
$\{(A, 0)\}$

Network layer - Routin

> A wants to find a path to Dest. $\{(A, 0),(B, 2)\}$

A wants to find a path to Dest.

$$
\{(A, 0)\}
$$

Network layer - Routin

> A wants to find a path to Dest. $\{(A, 0),(B, 2)\}$

A wants to find a path to Dest. $\{(A, 0)\}$

Network layer - Routin

A wants to find a path to Dest. $\{(\mathrm{A}, \mathrm{O}),(\mathrm{B}, 2)\}$

A wants to find a path to Dest. $\{(\mathrm{A}, 0)\}$

Network layer - Routin

A wants to find a path to Dest. $\{(\mathrm{A}, \mathrm{O}),(\mathrm{B}, 2)\}$

Path to Dest.

$\{(A, 0),(B, 2)$,
(D, 3)\}

Path to Dest. $\{(A, 0),(C, 7)$,

A wants to firm path to Dest. $\{(\mathrm{A}, \mathrm{O}),(\mathrm{C}, 7)\}$

Network layer - Routin

A wants to find a path to Dest. $\{(\mathrm{A}, \mathrm{O}),(\mathrm{B}, 2)\}$

Path to Dest. find a path to Dest. $\{(A, 0)\}$

Network layer - Routin

A wants to find a path to Dest. $\{(A, 0),(B, 2)\}$

Path to Dest. find a path to
A wants to

A wants to find a path to Dest. $\{(A, 0),(B, 2),(C, 1)\}$

Network layer - Routing

Attempt 1: Dynamic Source Routing

- Broadcast a Route Request Packet for destination d
- Put source ID in the packet header
- At each router
- If a path not known to the destination
- Put its \{ID, cost $\}$ in the packet header
- Broadcast the Route Request Packet
- Else
- Respond with a Route Reply packet
- Put known path in the packet header
- Challenge?

Network layer - Routing

Network layer - Routing

Network layer - Routing

$$
\begin{aligned}
& \{(\mathrm{A}-\mathrm{B}, 2), \\
& (\mathrm{B}-\mathrm{C}, 1), \\
& (\mathrm{B}-\mathrm{D}, 3)\}
\end{aligned}
$$

$$
\begin{aligned}
& \{(A-B, 0), \\
& (A-C, 7)\}
\end{aligned}
$$

Network layer - Routing

$$
\begin{aligned}
& \{(A-B, 2), \\
& (B-C, 1), \\
& (B-D, 3)\}
\end{aligned}
$$

$$
\begin{aligned}
& \{(A-B, 0), \\
& (A-C, 7)\}
\end{aligned}
$$

$$
\begin{aligned}
& \{(\mathrm{A}-\mathrm{C}, 7), \\
& (\mathrm{B}-\mathrm{C}, 1)\}
\end{aligned}
$$

Network layer - Routing

Network layer - Routing

Attempt 2: Link State Routing

- Each router maintains its local "link state" (LS)
- Each router periodically "floods" its LS
- And forwards all the LS received from other routers
- At one point
- Every router knows the entire topology
- Run a shortest path algorithm (e.g., Dijkstra) locally
- Find path to the destination
- More importantly, find next-hop to the destination
- Challenge?

Network layer - Routing

Attempt 3: Distance Vector Routing

- Each router
- maintains its "current distance to destination"
- Periodically announces it to all its neighbors
- Update its local table
- $d(A, d e s t)=\min \{d(A$, neighbor $)+d($ neighbor, dest $)\}$
- \{dest — distance, neighbor-that-minimizes-distance\}
- Broadcast to all its neighbors

