
Deadlocks:	
Detec-on	&	Avoidance

CS	4410,	Opera-ng	Systems	

Fall	2016	
Cornell	University

Rachit	Agarwal	
Anne	Bracy	

See:	Ch	6	in	OSPP	textbook	

The	slides	are	the	product	of	many	rounds	of	teaching	CS	4410	by	Professors	Sirer,	
Bracy,	Agarwal,	George,	and	Van	Renesse.



System	Model

2

There	are	non-shared	computer	resources	
• 	1+	instances	(printers,	semaphores,	CPU,	etc.)	
Processes	need	access	to	these	resources	
• 	Acquire	resource	
•	If	resource	is	available,	access	is	granted	
•	If	not	available,	the	process	is	blocked	

• 	Use	resource	
• 	Release	resource	
Undesirable	scenario:	
•	Process	A	acquires	resource	1,	waits	for	resource	2	
• 	Process	B	acquires	resource	2,	waits	for	resource	1	
	➛	Deadlock!



Classic	Deadlock

3



Example	1:	Semaphores

4

semaphore:			
file_mutex	=	1						 /*	protects	file	resource	*/ 
printer_mutex	=	1					/*	protects	printer	resource	*/

Process	A	code:	
	{	
			/*	initial	compute	*/	

			P(file_mutex)	
			P(printer_mutex)	

			/*	use	resources	*/	

			V(printer_mutex)	
			V(file_mutex)	
}

Process	B	code:	
	{	
			/*	initial	compute	*/	

			P(printer_mutex)	
			P(file_mutex)	

			/*	use	resources	*/	

			V(file_mutex)	
			V(printer_mutex)	
}



Example	2:	Dining	Philosophers

5

• 	Philosophers	go	out	for	Chinese	food	
• 	Need	exclusive	access	to	2	chops-cks	to	eat	food

class	Philosopher:	
chopsticks[N]	=	[Semaphore(1),…]	

def	__init__(mynum)	
		self.id	=	mynum	

def	eat():	
			right	=	(self.id+1)	%	N	
			left	=	(self.id-1+N)	%	N	
			while	True:							
	 	

						#	om	nom	nom

P(left)	
P(right)	

	V(right)	
	V(left)



StarvaNon	vs.	Deadlock

6

Starva-on:	thread	waits	indefinitely	

Deadlock:	circular	wai-ng	for	resources	
					Deadlock	=>	starva-on,	but	not	vice	versa	

Subject	to	deadlock	≠	will	deadlock	
➛	Tes-ng	is	not	the	solu-on	
➛	System	must	be	deadlock-free	by	design



Four	CondiNons	for	Deadlock

7

Necessary	condi-ons	for	deadlock	to	exist:	
• 	Mutual	Exclusion	/	Bounded	Resources	
At	least	one	resource	must	be	held	in	non-sharable	mode	
• Hold	and	wait	

∃	a	process	holding	a	resource,	and	wai-ng	for	another	
• No	preemp<on	
• Resources	cannot	be	preempted	

• Circular	wait	
• ∃	a	set	of	processes	{P1,	P2,	…	PN},	such	that	
P1	is	wai-ng	for	P2,	P2	for	P3,	….	and	PN	for	P1	

All	four	condi-ons	must	hold	for	deadlock	to	occur.	
Note:	not	just	about	locks!

[Coffman	1971]



Is	this	a	Deadlock?

8

Truck	A	has	to	wait	for	Truck	B	to	move	

1.	Mutual	Exclusion	
2.	Hold	&	Wait	
3.	No	Preemp-on	
4.	Circular	Wait	

Deadlock?



Is	this	a	Deadlock?

9

Gridlock	

1.	Mutual	Exclusion	
2.	Hold	&	Wait	
3.	No	Preemp-on	
4.	Circular	Wait	

Deadlock?



Is	this	a	Deadlock?

10

Gridlock	

1.	Mutual	Exclusion	
2.	Hold	&	Wait	
3.	No	Preemp-on	
4.	Circular	Wait	

Deadlock?



Is	this	a	Deadlock?

11

Gridlock	

1.	Mutual	Exclusion	
2.	Hold	&	Wait	
3.	No	Preemp-on	
4.	Circular	Wait	

Deadlock?



12

Create	a	Wait-For	Graph	
• 	1	Node	per	Process	
• 	1	Edge	per	Wai-ng	Process,	P	

						(from	P	to	the	process	it’s	wai-ng	for)	
Note:	Do	this	in	a	single	instant	of	-me,	not	as	
things	change	

Cycles	in	graph	indicate	deadlock	

Deadlock	Detec+on



TesNng	for	cycles	(	=	deadlock)

13

Find	a	node	with	no	outgoing	edges	
• 	Erase	node	
• 	Erase	any	edges	coming	into	it	

Intui-on:	this	was	a	process	wai-ng	on	nothing.	It	
will	eventually	finish,	and	anyone	wai-ng	on	it	will	
no	longer	be	wai-ng.	

Erase	whole	graph	⬌	graph	has	no	cycles	
Graph	remains	⬌	deadlock	
This	is	a	graph	reduc-on	algorithm.



Graph	ReducNon:	Example	1

14

Graph	can	be	fully	reduced,	hence	there	was	no	
deadlock	at	the	-me	the	graph	was	drawn.	
(Obviously,	things	could	change	later!)

8

6 5

0 3

49

10

11

7

12

1

2



Graph	ReducNon:	Example	2

15

No	node	with	no	outgoing	edges…	
Irreducible	graph,	contains	a	cycle	
	 (only	some	processes	are	in	the	
cycle)	
➛	deadlock

3

10

11

7

12



Resource	waits

16

Processes	usually	don’t	wait	for	each	other	
• 	They	wait	for	resources	used	by	other	
processes	
• 	P1	needs	access	to	the	cri-cal	sec-on	of	
memory	P2	is	using	

Can	we	extend	our	graphs	to	represent	resource	
wait?	



Resource	AllocaNon	Graphs

17

2	kinds	of	nodes	
• 	A	process:	P3	represented	as		
		
•A	resource:	R7	represented	as	
mul-ple	iden-cal	units	of	the	resource				
(e.g.,	blocks	of	memory)	=	circles	in	box	

Edge	from	P3	to	R8:	
“P3	wants	k	units	of	R8”

3

7

3
8

Edge	from	R5	to	P6:	
“P6	has	k	units	of	R5”
5k 2 6



Example	Resource	AllocaNon	Graph	(RAG)

18

1 2

1 2 3 4

1 1
2

1 1

4



Example	Resource	AllocaNon	Graph	(RAG)

19

1 2

1 2 3 4

1 1
2

1 1

4

red	is	opNonal,	but	we	think	it	helps…



ReducNon	Rules

20

•	Find	sa-sfiable	process	P:		
available	amount	of	resource	≥	amount	requested		

• 	Erase	P	
					Intui<on:	grant	the	request,	let	it	run,	eventually	it	
will	release	the	resource	
• Repeat	un-l:		
			all	processes	gone	(yay!)	—or—		irreducible	(boo!)

5 8

62 1



Is	this	graph	reducible?

21

1 2

1 2 3 4

1 1
2

1 1

4



Is	this	graph	reducible?

22

1 2

1 2 3 4

1 1
2

5 1

4



Deadlock	DetecNon	Algorithm

23

Data	structures:	
n:		 	 	 	 			number	of	processes	
m:		 	 	 	 			number	of	resource	types	
avail[1..m]:						avail[j]:	#	of	currently	available	type	j	resources	
alloc[n][m]:	 			current	allocation	of	resource	Rj	to	Pi	
req[n][m]:	 						current	demand	of	each	Pi	for	each	Rj	
																								(in	addition	to	what	has	already	been	allocated)	
1.	free[]	=	avail[]	
2.	for	all	processes	i:	finish[i]	=	(alloc[i]	==	[0,0,…,	0])	
3.	find	process	i	such	that	finish[i]	=	0	and	req[i]	≤	free	
	 	 if	no	such	i	exists,	goto	7	
4.	free	=	free	+	alloc[i]	
5.	finish[i]	=	true	
6.	goto	3	
7.	system	is	deadlocked	iff	finish[i]	=	0	for	some	process	i	



Example

24

4	processes,	3	resource	types,		
avail[0,0,1]:					1	type-2	resource	available	

													allocation																request	

1.	free[]	=	avail[]	
2.	for	all	processes	i:	finish[i]	=	(alloc[i]	==	[0,0,…,	0])	
3.	find	process	i	such	that	finish[i]	=0	and	req[i]	≤	free[i]	
	 	 if	no	such	i	exists,	goto	7	
4.	free	=	free	+	alloc[i]	
5.	finish[i]	=	true	
6.	goto	3	
7.	system	is	deadlocked	iff	finish[i]	=	0	for	some	process	i

R0 R1 R2
P0 1 1 1
P1 2 1 2
P2 1 1 0
P3 1 1 1

R0 R1 R2
P0 3 2 1
P1 2 2 1
P2 0 0 1
P3 1 1 1

free[0,0,1]



Example

25

4	processes,	3	resource	types,		
avail[0,0,1]:					1	type-2	resource	available	

													allocation																request	

1.	free[]	=	avail[]	
2.	for	all	processes	i:	finish[i]	=	(alloc[i]	==	[0,0,…,	0])	
3.	find	process	i	such	that	finish[i]	=0	and	req[i]	≤	free[i]	
	 	 if	no	such	i	exists,	goto	7	
4.	free	=	free	+	alloc[i]	
5.	finish[i]	=	true	
6.	goto	3	
7.	system	is	deadlocked	iff	finish[i]	=	0	for	some	process	i

R0 R1 R2
P0 1 1 1
P1 2 1 2
P2 1 1 0
P3 1 1 1

R0 R1 R2
P0 3 2 1
P1 2 2 1
P2 0 0 1
P3 1 1 1

free[0,0,1]
finish[0,0,0,0]

What	about	a	process	with	a	request	that	currently	has	nothing	allocated?	Since	it	holds	
no	resources	it	will	not	parNcipate	in	the	hold-and-wait	deadlock	circle,	so	we	ignore	it.



Example

26

4	processes,	3	resource	types,		
avail[0,0,1]:					1	type-2	resource	available	

													allocation																request	

1.	free[]	=	avail[]	
2.	for	all	processes	i:	finish[i]	=	(alloc[i]	==	[0,0,…,	0])	
3.	find	process	i	such	that	finish[i]	=0	and	req[i]	≤	free[i]	
	 	 if	no	such	i	exists,	goto	7	
4.	free	=	free	+	alloc[i]	
5.	finish[i]	=	true	
6.	goto	3	
7.	system	is	deadlocked	iff	finish[i]	=	0	for	some	process	i

R0 R1 R2
P0 1 1 1
P1 2 1 2
P2 1 1 0
P3 1 1 1

R0 R1 R2
P0 3 2 1
P1 2 2 1
P2 0 0 1
P3 1 1 1

free[0,0,1]
finish[0,0,0,0]



Example

27

4	processes,	3	resource	types,		
avail[0,0,1]:					1	type-2	resource	available	

													allocation																request	

1.	free[]	=	avail[]	
2.	for	all	processes	i:	finish[i]	=	(alloc[i]	==	[0,0,…,	0])	
3.	find	process	i	such	that	finish[i]	=0	and	req[i]	≤	free[i]	
	 	 if	no	such	i	exists,	goto	7	
4.	free	=	free	+	alloc[i]	
5.	finish[i]	=	true	
6.	goto	3	
7.	system	is	deadlocked	iff	finish[i]	=	0	for	some	process	i

R0 R1 R2
P0 1 1 1
P1 2 1 2
P2 1 1 0
P3 1 1 1

R0 R1 R2
P0 3 2 1
P1 2 2 1
P2 - - -
P3 1 1 1

free[0,0,1]
finish[0,0,0,0]
free[1,1,1]



free[1,1,1]

Example

28

4	processes,	3	resource	types,		
avail[0,0,1]:					1	type-2	resource	available	

													allocation																request	

1.	free[]	=	avail[]	
2.	for	all	processes	i:	finish[i]	=	(alloc[i]	==	[0,0,…,	0])	
3.	find	process	i	such	that	finish[i]	=0	and	req[i]	≤	free[i]	
	 	 if	no	such	i	exists,	goto	7	
4.	free	=	free	+	alloc[i]	
5.	finish[i]	=	true	
6.	goto	3	
7.	system	is	deadlocked	iff	finish[i]	=	0	for	some	process	i

R0 R1 R2
P0 1 1 1
P1 2 1 2
P2 - - -
P3 1 1 1

R0 R1 R2
P0 3 2 1
P1 2 2 1
P2 - - -
P3 1 1 1finish[0,0,0,0]finish[0,0,1,0]



finish[0,0,1,0]
free[1,1,1]

Example

29

4	processes,	3	resource	types,		
avail[0,0,1]:					1	type-2	resource	available	

													allocation																request	

1.	free[]	=	avail[]	
2.	for	all	processes	i:	finish[i]	=	(alloc[i]	==	[0,0,…,	0])	
3.	find	process	i	such	that	finish[i]	=0	and	req[i]	≤	free[i]	
	 	 if	no	such	i	exists,	goto	7	
4.	free	=	free	+	alloc[i]	
5.	finish[i]	=	true	
6.	goto	3	
7.	system	is	deadlocked	iff	finish[i]	=	0	for	some	process	i

R0 R1 R2
P0 1 1 1
P1 2 1 2
P2 - - -
P3 1 1 1

R0 R1 R2
P0 3 2 1
P1 2 2 1
P2 - - -
P3 1 1 1



finish[0,0,1,0]
free[1,1,1]

Example

30

4	processes,	3	resource	types,		
avail[0,0,1]:					1	type-2	resource	available	

													allocation																request	

1.	free[]	=	avail[]	
2.	for	all	processes	i:	finish[i]	=	(alloc[i]	==	[0,0,…,	0])	
3.	find	process	i	such	that	finish[i]	=0	and	req[i]	≤	free[i]	
	 	 if	no	such	i	exists,	goto	7	
4.	free	=	free	+	alloc[i]	
5.	finish[i]	=	true	
6.	goto	3	
7.	system	is	deadlocked	iff	finish[i]	=	0	for	some	process	i

R0 R1 R2
P0 1 1 1
P1 2 1 2
P2 - - -
P3 1 1 1

R0 R1 R2
P0 3 2 1
P1 2 2 1
P2 - - -
P3 - - -

free[2,2,2]



4	processes,	3	resource	types,		
avail[0,0,1]:					1	type-2	resource	available	

													allocation																request	

1.	free[]	=	avail[]	
2.	for	all	processes	i:	finish[i]	=	(alloc[i]	==	[0,0,…,	0])	
3.	find	process	i	such	that	finish[i]	=0	and	req[i]	≤	free[i]	
	 	 if	no	such	i	exists,	goto	7	
4.	free	=	free	+	alloc[i]	
5.	finish[i]	=	true	
6.	goto	3	
7.	system	is	deadlocked	iff	finish[i]	=	0	for	some	process	i

finish[0,0,1,0]
free[2,2,2]

Example

31

R0 R1 R2
P0 1 1 1
P1 2 1 2
P2 - - -
P3 - - -

R0 R1 R2
P0 3 2 1
P1 2 2 1
P2 - - -
P3 - - -finish[0,0,1,1]



4	processes,	3	resource	types,		
avail[0,0,1]:					1	type-2	resource	available	

													allocation																request	

1.	free[]	=	avail[]	
2.	for	all	processes	i:	finish[i]	=	(alloc[i]	==	[0,0,…,	0])	
3.	find	process	i	such	that	finish[i]	=0	and	req[i]	≤	free[i]	
	 	 if	no	such	i	exists,	goto	7	
4.	free	=	free	+	alloc[i]	
5.	finish[i]	=	true	
6.	goto	3	
7.	system	is	deadlocked	iff	finish[i]	=	0	for	some	process	i

finish[0,0,1,1]
free[2,2,2]

Example

32

R0 R1 R2
P0 1 1 1
P1 2 1 2
P2 - - -
P3 - - -

R0 R1 R2
P0 3 2 1
P1 2 2 1
P2 - - -
P3 - - -



4	processes,	3	resource	types,		
avail[0,0,1]:					1	type-2	resource	available	

													allocation																request	

1.	free[]	=	avail[]	
2.	for	all	processes	i:	finish[i]	=	(alloc[i]	==	[0,0,…,	0])	
3.	find	process	i	such	that	finish[i]	=0	and	req[i]	≤	free[i]	
	 	 if	no	such	i	exists,	goto	7	
4.	free	=	free	+	alloc[i]	
5.	finish[i]	=	true	
6.	goto	3	
7.	system	is	deadlocked	iff	finish[i]	=	0	for	some	process	i

finish[0,1,1,1]
free[4,3,4]

Example

33

R0 R1 R2
P0 1 1 1
P1 - - -
P2 - - -
P3 - - -

R0 R1 R2
P0 3 2 1
P1 - - -
P2 - - -
P3 - - -



4	processes,	3	resource	types,		
avail[0,0,1]:					1	type-2	resource	available	

													allocation																request	

1.	free[]	=	avail[]	
2.	for	all	processes	i:	finish[i]	=	(alloc[i]	==	[0,0,…,	0])	
3.	find	process	i	such	that	finish[i]	=0	and	req[i]	≤	free[i]	
	 	 if	no	such	i	exists,	goto	7	
4.	free	=	free	+	alloc[i]	
5.	finish[i]	=	true	
6.	goto	3	
7.	system	is	deadlocked	iff	finish[i]	=	0	for	some	process	i

finish[0,1,1,1]
free[4,3,4]

Example

34

R0 R1 R2
P0 1 1 1
P1 - - -
P2 - - -
P3 - - -

R0 R1 R2
P0 3 2 1
P1 - - -
P2 - - -
P3 - - -



QuesNon	#1

35

Does	order	of	reduc-on	maoer?

Answer:	No.	
Explana<on:	an	unchosen	candidate	at	one	step	
remains	a	candidate	for	later	steps.	Eventually—
regardless	of	order—every	node	will	be	reduced.	



QuesNon	#2

36

If	a	system	is	deadlocked,	could	the	deadlock	go	
away	on	its	own?

Answer:	No,	unless	someone	kills	one	of	the	threads	or	
something	causes	a	process	to	release	a	resource.	
Explana<on:	Many	real	systems	put	-me	limits	on	
“wai-ng”	precisely	for	this	reason.		When	a	process	
gets	a	-meout	excep-on,	it	gives	up	wai-ng;	this	can	
eliminate	the	deadlock.		
Process	may	be	forced	to	terminate	itself	because	
osen,	if	a	process	can’t	get	what	it	needs,	there	are	no	
other	op-ons	available!



QuesNon	#3

37

Suppose	a	system	isn’t	deadlocked	at	-me	T.		
Can	we	assume	it	will	s-ll	be	free	of	deadlock	at	
-me	T+1?

Answer:	No	
Explana<on:	the	very	next	thing	it	might	do	is	to	run	
some	process	that	will	request	a	resource…		
					…	establishing	a	cyclic	wait	
					…	and	causing	deadlock



Dealing	with	Deadlocks	(1)

38

Reac<ve	Approaches:	
• 	Periodically	check	for	evidence	of	deadlock	

						(graph	reduc-on	algorithm)	
• 	Need	a	way	to	recover	
• 	Blue	screen	and	reboot	the	computer	
• 	Pick	a	“vic-m”	and	terminate	that	thread	

(Only	possible	in	certain	kinds	of	applica-ons)	
• 	Have	threads	“retry”	from	scratch	

	 (despite	drawbacks,	database	systems	do	this)	



Dealing	with	Deadlocks	(2)

39

Proac<ve	Approaches:	
• 	Deadlock	Preven-on	&	Avoidance	

• Prevent	1	of	4	necessary	condi-ons	from	arising	
• ….	will	prevent	deadlock	from	occurring	



40

1.	Mutual	exclusion	/	Bounded	Resources:	
• Make	resources	sharable	without	locks?	
• Make	more	resources	available?	
• Example:	reserve	space	in	TCB	for	thread	to	be	
inserted	into	a	wai-ng	list	or	the	ready	list.	
• Not	always	possible	(e.g.,	printers)	

Deadlock	Preven+on	:	negate	1	of	the	4



41

2.	Hold	and	wait	
Don’t	hold	resources	when	wai-ng	for	another	
• 	re-write	code:	

•	Request	all	resources	before	execu-on	begins	
- Processes	don’t	know	what	they	need	ahead	of	-me	
- Starva-on	(if	wai-ng	on	many	popular	resources)	
- Low	u-liza-on	(need	resource	only	for	a	bit)	
Op-miza-on:	Release	all	resources	before	reques-ng	
anything	new?		S-ll	has	last	two	problems	😞

Deadlock	Preven+on	:	negate	1	of	the	4

Module::	foo()		{	
		lock.acquire();	
		doSomeStuff();	
		otherModule->bar();	
		doOtherStuff();	
		lock.release();	}	

Module::	foo()		{	
			doSomeStuff();	
			otherModule->bar();	
			doOtherStuff();			
}

have	these	2	fns	acquire/release



42

3.	No	preemp<on:	
• Make	resources	pre-emptable	by	run-me	system	
1.	Preempt	reques-ng	processes’	resources	if	all	not	available	
2.	Preempt	resources	of	wai-ng	processes	to	sa-sfy	request	

• Good	when	easy	to	save	and	restore	state	of	resource	
• CPU	registers	
• memory	virtualiza-on	(page	memory	to	disk,	
maybe	even	page	tables)		

Deadlock	Preven+on	:	negate	1	of	the	4



43

4.		Circular	Wait	
• 	Single	lock	for	en-re	system?	
• 	Impose	par-al	ordering	on	resources,	request	in	order		

IntuiNon:	Cycle	requires	an	edge	from	low	to	high,	and	
from	high	to	low	numbered	node,	or	to	same	node

Deadlock	Preven+on	:	negate	1	of	the	4

1

2

3

4 12 1



PrevenNng	Dining	Philosophers	Deadlock?

44

1.	Mutual	Exclusion	/	Bounded	Resources	

2.	Hold	and	wait	

3.	No	preemp<on	

4.	Circular	wait	



Deadlock	Avoidance

45

How	do	cars	do	it?	
• 	Try	not	to	block	an	intersec-on	
• 	Don’t	drive	into	the	intersec-on	if	you	can	see	
that	you’ll	be	stuck	there.	

Why	does	this	work?	
• 	Prevents	a	wait-for	rela-onship	
• 	Cars	won’t	take	up	a	resource	if	they	see	they	
won’t	be	able	to	acquire	the	next	one…	



Deadlock	Dynamics

46

Safe	state:	
• 	For	any	possible	sequence	of	future	resource	requests,	it	
is	possible	to	eventually	grant	all	requests	
• 	May	require	wai-ng	even	when	resources	are	available!	

Unsafe	state:	
• 	Some	sequence	of	resource	requests	can	result	in	
deadlock	

Doomed	state:	
• 	All	possible	computa-ons	lead	to	deadlock	

Deadlocked	state:	
• 	System	has	at	least	one	deadlock	



Possible	System	States

47

Safe

Unsafe
Deadlock



Safe	State

48

• 	A	state	is	said	to	be	safe,	if	there	exists	a	sequence	
of	processes	[P1,	P2,…,	Pn]	such	that	for	each	Pi	the	
resources	that	Pi	can	s-ll	request	can	be	sa-sfied	by	
the	currently	available	resources	plus	the	resources	
held	by	all	Pj	where	j	<	i	

•	State	is	safe	b/c	OS	can	definitely	avoid	deadlock		
•	by	blocking	new	requests	un-l	safe	order	is	
executed	

• 	Avoids	circular	wait	condi-on	from	ever	happening	
•	Process	waits	un-l	safe	state	is	guaranteed



Safe	State	Example

49

Suppose:	12	tape	drives	and	3	processes:	p0,	p1,	and	p2	

current	state	is	safe	because	a	safe	sequence	exists:	[p1,	p0,	p2]	
•	p1	can	complete	with	remaining	resources	
•	p0	can	complete	with	remaining+p1	
•	p2	can	complete	with	remaining+p1+p0	

What	if	p2	requests	1	drive?	Grant	or	not?

max	
need

current	
usage

could	
ask	for

p0 10 5 5
p1 4 2 2
p2 9 2 7

3	drives	remain



Banker’s	Algorithm

50

• 	Suppose	we	know	the	“worst	case”	resource	needs	
of	processes	in	advance	
• 	A	bit	like	knowing	the	credit	limit	on	your	credit	
cards.		(This	is	why	they	call	it	the	Banker’s	
Algorithm)	

• 	Observa<on:	Suppose	we	just	give	some	process	
ALL	the	resources	it	could	need…		
• 	Then	it	will	execute	to	comple-on.			
• 	Aser	which	it	will	give	back	the	resources.	

• 	Hmmm,	if	Visa	hands	you	all	the	money	your	credit	
lines	permit,	at	the	end	of	the	month,	will	you	pay	
your	en-re	bill?



Banker’s	Algorithm

51

•	So…	
• 	A	process	pre-declares	its	worst-case	needs	
• 	Then	it	asks	for	what	it	“really”	needs,	a	liole	at	a	-me	
• 	The	algorithm	decides	when	to	grant	requests	

•	It	delays	a	request	unless:	
• 	It	can	find	a	sequence	of	processes…	
• 	….	such	that	it	could	grant	their	outstanding	need…	
• 	…	so	they	would	terminate…		
• 	…	lezng	it	collect	their	resources…		
• 	…	and	in	this	way	it	can	execute	everything	to	
comple-on!



Banker’s	Algorithm

52

How	will	it	really	do	this?	
• 	The	algorithm	will	just	implement	the	graph	
reduc-on	method	for	resource	graphs	
• 	Graph	reduc-on	is	“like”	finding	a	sequence	of	
processes	that	can	be	executed	to	comple-on	

So:	given	a	request	
• 	Build	a	resource	alloca-on	graph	assuming	the	
request	is	granted	
• 	See	if	it	is	reducible,	only	grant	request	if	so	
• 	Else	must	delay	the	request	un-l	someone	releases	
some	resources,	at	which	point	can	test	again



Banker’s	Algorithm

53

• Decides	whether	to	grant	a	resource	request.			
• Data	structures	(similar	to	before):	

n:		 	 	 	 	number	of	processes	
m:		 	 	 	 	number	of	resource	types	
avail[m]:	 				avail[j]:	#	of	currently	available	type	j	resources	
max[n][m]:	 	 	max	demand	of	each	Pi	for	each	Ri	
alloc[n][m]:	 	current	allocation	of	resource	Rj	to	Pi	
need[n][m]:		 	max	#	resource	Rj	that	Pi	may	still	request	
	 	 	 	 	 	 (need	=	max	–	allocation)	

algorithm-internal	state:	
finish[n]	—	which	processors	are	finished	in	this	scenario	
free[m]			—	which	resources	are	available	inside	path	

[Dijkstra	1977]



How	to	check	safety?

54

free[1..m]	=	available					/*	how	many	resources	available	*/	
finish[1..n]	=	[0..0]						/*	none	finished	yet	*/	

Step	1:		
		Find	a	process	i	such	that	finish[i]	=	F	and	need[i]	≤	free	
		If	f	no	such	i	exists,	go	to	Step	3							/*	we’re	done	*/	
	 	
Step	2:	Found	an	i:	
	 	 	 finish	[i]	=	1	
	 	 	 free	=	free	+	alloc[i]		
	 	 	 go	to	Step	1	

Step	3:	The	system	is	safe	iff	finish[i]	=	1	for	all	i	



Full	Banker’s	Algorithm

55

Let	process	i	be	the	next	process	that	is	scheduled	to	run	
Let	request[i]	be	vector	of	#	of	resource	Rj	Process	Pi	wants	
in	addition	to	the	resources	it	already	has	

1.	If	request[i]	>	need[i]	then	error	(asked	for	too	much)	
2.	If	request[i]	>	available	then	wait	(can’t	supply	it	now)	
3.	Resources	are	currently	available	to	satisfy	the	request.	
	 Tentatively	assume	we	satisfy	the	request.		
Then	we	would	have:	
	 	 available	=	available	-	request[i]	
	 	 alloc[i]	=	alloc[i]	+	request[i]	
	 	 need[i]	=	need[i]	-	request[i]	
	 Now,	check	if	this	would	leave	us	in	a	safe	state:	
	 	 if	yes,	grant	the	request,		
	 	 if	no,	then	leave	state	as	is	&	cause	process	to	wait	



Banker’s	Algorithm

56

Is	State	1	a	safe	state?	
	 Is	there	a	sequence	of	gran-ng	processors	
resources	that	sa-sfies	everyone?		

A B C
P0 0 1 0
P1 2 0 0
P2 3 0 2
P3 2 1 1
P4 0 0 2

allocation
A B C
7 5 3
3 2 2
9 0 2
2 2 2
4 3 3

max
A B C
3 3 2

available
State	1



Banker’s	Algorithm

57

State	1	is	a	safe	state.	
	 safe	sequence:		[P1,	P3,	P4,	P2,	P0]	
Now	suppose	that	P1	requests	(1,0,2)		
	 	 	 add	it	to	P1’s	alloca-on	
	 	 	 subtract	it	from	Available

A B C
P0 0 1 0
P1 2 0 0
P2 3 0 2
P3 2 1 1
P4 0 0 2

allocation
A B C
7 5 3
3 2 2
9 0 2
2 2 2
4 3 3

max
A B C
3 3 2

available
State	1



Banker’s	Algorithm

58

Is	State	2	a	safe	state?	
	 Is	there	a	sequence	of	gran-ng	processors	
resources	that	sa-sfies	everyone?		

A B C
P0 0 1 0
P1 3 0 2
P2 3 0 2
P3 2 1 1
P4 0 0 2

allocation
A B C
7 5 3
3 2 2
9 0 2
2 2 2
4 3 3

max
A B C
2 3 0

available
State	2



Banker’s	Algorithm

59

State	2	is	s-ll	safe:	safe	seq	[P1,	P3,	P4,	P0,	P2].	
Now	suppose	P4	requests	(3,3,0)					
• 	not	enough	available	resources:	has	to	wait	

A B C
P0 0 1 0
P1 3 0 2
P2 3 0 2
P3 2 1 1
P4 0 0 2

allocation
A B C
7 5 3
3 2 2
9 0 2
2 2 2
4 3 3

max
A B C
2 3 0

available
State	2



Banker’s	Algorithm

60

State	2	is	s-ll	safe:	safe	seq	[P1,	P3,	P4,	P0,	P2].	
Now	suppose	P0	requests	(0,2,0)	
• 	have	enough	resources,	but,	hypothe-cally…	
								add	it	to	P0’s	alloca-on	

	 	 	 subtract	it	from	Available

A B C
P0 0 1 0
P1 3 0 2
P2 3 0 2
P3 2 1 1
P4 0 0 2

allocation
A B C
7 5 3
3 2 2
9 0 2
2 2 2
4 3 3

max
A B C
2 3 0

available
State	2



Banker’s	Algorithm

61

Is	State	3	a	safe	state?	
	 Is	there	a	sequence	of	gran-ng	processors	
resources	that	sa-sfies	everyone?		

A B C
P0 0 3 0
P1 3 0 2
P2 3 0 2
P3 2 1 1
P4 0 0 2

allocation
A B C
7 5 3
3 2 2
9 0 2
2 2 2
4 3 3

max
A B C
2 1 0

available
State	3



Banker’s	Algorithm

62

State	3	is	unsafe	state	(why?)	
So	P0	has	to	wait	

A B C
P0 0 3 0
P1 3 0 2
P2 3 0 2
P3 2 1 1
P4 0 0 2

allocation
A B C
7 5 3
3 2 2
9 0 2
2 2 2
4 3 3

max
A B C
2 1 0

available
State	3



Problems	with	Bankers

63

•	The	number	of	processes	is	fixed	
•	Need	to	know	how	many	resources	each	process	
will	request	ahead	of	-me	



Deadlock	DetecNon	&	Recovery

64

•	If	neither	avoidance	or	preven-on	is	
implemented,	deadlocks	can	(and	will)	occur.		
•	Coping	with	this	requires:	
•	Detec-on:	finding	out	if	deadlock	has	occurred		
• 	Keep	track	of	resource	alloca-on	(who	has	what)	
• 	Keep	track	of	pending	requests	(who	is	wai-ng	
for	what)	

• 	Recovery:	untangle	the	mess.	
•	Expensive	to	detect,	as	well	as	recover	



When	to	run	the	DetecNon	Algorithm?

65

•	For	every	resource	request?	
•	For	every	request	not	immediately	sa-sfiable?	
•	Once	every	hour?	
•	When	CPU	u-liza-on	drops	below	40%?	
•	Some	combina-on	of	the	last	two?



Deadlock	Recovery

66

Killing	one/all	deadlocked	processes	
• 	Crude,	but	effec-ve	
• 	Keep	killing	processes,	un-l	deadlock	broken	
• 	Repeat	the	en-re	computa-on	

Preempt	resource/processes	un-l	deadlock	broken	
• 	Selec-ng	a	vic-m	(#	resources	held,	how	long	
executed)	
• 	Rollback	(par-al	or	total)	
• 	Starva-on	(prevent	a	process	from	being	executed)	



The	Story	So	Far

67

We	saw	that	you	can	prevent	deadlocks.			
• 	By	nega-ng	one	of	the	four	necessary	
condi-ons.	

We	saw	that	the	OS	can	schedule	processes	in	a	
careful	way	so	as	to	avoid	deadlocks.	
• 	By	preven-ng	circular	wai-ng	to	ever	occur	

We	discussed	op-ons	when	deadlock	has	occurs.	

The	discussion	con-nues…



TransacNons	/	TransacNonal	Memory

68

• 	Programming	simplicity	of	coarse-grain	locks	
• 	Higher	concurrency	(parallelism)	of	fine-grain	
locks	
• 	Cri-cal	sec-ons	only	serialized	if	data	is	
actually	shared	
• 	No	lock	acquisi-on	overhead	



TransacNonal	Memory

69

Big	idea	I:	no	locks,	just	shared	data		
Big	idea	II:	op-mis-c	(specula-ve)	concurrency	
• 	Execute	cri-cal	sec-on	specula-vely,	abort	on	
conflicts	
• 	“Beoer	to	beg	for	forgiveness	than	to	ask	for	
permission”	

Read	set:	set	of	shared	addresses	cri-cal	sec-on	reads	
Example:	accts[37].bal,	accts[241].bal	
Write	set:	set	of	shared	addresses	cri-cal	sec-on	writes	
Example:	accts[37].bal,	accts[241].bal



 begin_transaction

70

• 	Take	a	local	register	checkpoint	
• 	Locally	track	read	set	(remember	addresses	you	read)	
• 	See	if	anyone	else	is	trying	to	write	it	
• 	Locally	buffer	all	of	your	writes	(invisible	to	other	
processors)	
• 	Local	ac-ons	only:	no	lock	acquire

struct	acct_t	{	int	bal;	};	
shared	struct	acct_t		accts[MAX_ACCT];	
int	id_from,id_to,amt;	

begin_transaction();	
if	(accts[id_from].bal	>=	amt)	{	
			accts[id_from].bal	-=	amt;	
			accts[id_to].bal	+=	amt;	}	
end_transaction();



end_transaction

71

• 	Check	read	set:	is	data	you	read	s-ll	valid	(i.e.,	
no	writes	to	any)	
• 	Yes?	Commit	transac-ons:	commit	writes	
• 	No?	Abort	transac-on:	restore	checkpoint

struct	acct_t	{	int	bal;	};	
shared	struct	acct_t		accts[MAX_ACCT];	
int	id_from,id_to,amt;	

begin_transaction();	
if	(accts[id_from].bal	>=	amt)	{	
			accts[id_from].bal	-=	amt;	
			accts[id_to].bal	+=	amt;	}	
end_transaction();


